On this page
numpy.fft.fftn
- fft.fftn(a, s=None, axes=None, norm=None)[source]
-
Compute the N-dimensional discrete Fourier Transform.
This function computes the N-dimensional discrete Fourier Transform over any number of axes in an M-dimensional array by means of the Fast Fourier Transform (FFT).
- Parameters
-
- aarray_like
-
Input array, can be complex.
- ssequence of ints, optional
-
Shape (length of each transformed axis) of the output (
s[0]refers to axis 0,s[1]to axis 1, etc.). This corresponds tonforfft(x, n). Along any axis, if the given shape is smaller than that of the input, the input is cropped. If it is larger, the input is padded with zeros. ifsis not given, the shape of the input along the axes specified byaxesis used. - axessequence of ints, optional
-
Axes over which to compute the FFT. If not given, the last
len(s)axes are used, or all axes ifsis also not specified. Repeated indices inaxesmeans that the transform over that axis is performed multiple times. - norm{“backward”, “ortho”, “forward”}, optional
-
New in version 1.10.0.
Normalization mode (see
numpy.fft). Default is “backward”. Indicates which direction of the forward/backward pair of transforms is scaled and with what normalization factor.New in version 1.20.0: The “backward”, “forward” values were added.
- Returns
-
- outcomplex ndarray
-
The truncated or zero-padded input, transformed along the axes indicated by
axes, or by a combination ofsanda, as explained in the parameters section above.
- Raises
-
- ValueError
-
If
sandaxeshave different length. - IndexError
-
If an element of
axesis larger than than the number of axes ofa.
See also
-
numpy.fft -
Overall view of discrete Fourier transforms, with definitions and conventions used.
-
ifftn -
The inverse of
fftn, the inverse n-dimensional FFT. -
fft -
The one-dimensional FFT, with definitions and conventions used.
-
rfftn -
The n-dimensional FFT of real input.
-
fft2 -
The two-dimensional FFT.
-
fftshift -
Shifts zero-frequency terms to centre of array
Notes
The output, analogously to
fft, contains the term for zero frequency in the low-order corner of all axes, the positive frequency terms in the first half of all axes, the term for the Nyquist frequency in the middle of all axes and the negative frequency terms in the second half of all axes, in order of decreasingly negative frequency.See
numpy.fftfor details, definitions and conventions used.Examples
>>> a = np.mgrid[:3, :3, :3][0] >>> np.fft.fftn(a, axes=(1, 2)) array([[[ 0.+0.j, 0.+0.j, 0.+0.j], # may vary [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[ 9.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]], [[18.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]]) >>> np.fft.fftn(a, (2, 2), axes=(0, 1)) array([[[ 2.+0.j, 2.+0.j, 2.+0.j], # may vary [ 0.+0.j, 0.+0.j, 0.+0.j]], [[-2.+0.j, -2.+0.j, -2.+0.j], [ 0.+0.j, 0.+0.j, 0.+0.j]]])>>> import matplotlib.pyplot as plt >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12, ... 2 * np.pi * np.arange(200) / 34) >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape) >>> FS = np.fft.fftn(S) >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2)) <matplotlib.image.AxesImage object at 0x...> >>> plt.show()
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.fft.fftn.html