On this page
numpy.fft.rfftfreq
- fft.rfftfreq(n, d=1.0)[source]
-
Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).
The returned float array
fcontains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.Given a window length
nand a sample spacingd:f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is oddUnlike
fftfreq(but likescipy.fftpack.rfftfreq) the Nyquist frequency component is considered to be positive.- Parameters
-
- nint
-
Window length.
- dscalar, optional
-
Sample spacing (inverse of the sampling rate). Defaults to 1.
- Returns
-
- fndarray
-
Array of length
n//2 + 1containing the sample frequencies.
Examples
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float) >>> fourier = np.fft.rfft(signal) >>> n = signal.size >>> sample_rate = 100 >>> freq = np.fft.fftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., ..., -30., -20., -10.]) >>> freq = np.fft.rfftfreq(n, d=1./sample_rate) >>> freq array([ 0., 10., 20., 30., 40., 50.])
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.fft.rfftfreq.html