On this page
numpy.fromfunction
- numpy.fromfunction(function, shape, *, dtype=<class 'float'>, like=None, **kwargs)[source]
-
Construct an array by executing a function over each coordinate.
The resulting array therefore has a value
fn(x, y, z)at coordinate(x, y, z).- Parameters
-
- functioncallable
-
The function is called with N parameters, where N is the rank of
shape. Each parameter represents the coordinates of the array varying along a specific axis. For example, ifshapewere(2, 2), then the parameters would bearray([[0, 0], [1, 1]])andarray([[0, 1], [0, 1]]) - shape(N,) tuple of ints
-
Shape of the output array, which also determines the shape of the coordinate arrays passed to
function. - dtypedata-type, optional
-
Data-type of the coordinate arrays passed to
function. By default,dtypeis float. - likearray_like, optional
-
Reference object to allow the creation of arrays which are not NumPy arrays. If an array-like passed in as
likesupports the__array_function__protocol, the result will be defined by it. In this case, it ensures the creation of an array object compatible with that passed in via this argument.New in version 1.20.0.
- Returns
-
- fromfunctionany
-
The result of the call to
functionis passed back directly. Therefore the shape offromfunctionis completely determined byfunction. Iffunctionreturns a scalar value, the shape offromfunctionwould not match theshapeparameter.
Notes
Keywords other than
dtypeare passed tofunction.Examples
>>> np.fromfunction(lambda i, j: i, (2, 2), dtype=float) array([[0., 0.], [1., 1.]])>>> np.fromfunction(lambda i, j: j, (2, 2), dtype=float) array([[0., 1.], [0., 1.]])>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int) array([[ True, False, False], [False, True, False], [False, False, True]])>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int) array([[0, 1, 2], [1, 2, 3], [2, 3, 4]])
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.fromfunction.html