On this page
numpy.isinf
- numpy.isinf(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])=<ufunc 'isinf'>
-
Test element-wise for positive or negative infinity.
Returns a boolean array of the same shape as
x
, True wherex == +/-inf
, otherwise False.- Parameters
-
- xarray_like
-
Input values
- outndarray, None, or tuple of ndarray and None, optional
-
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- wherearray_like, optional
-
This condition is broadcast over the input. At locations where the condition is True, the
out
array will be set to the ufunc result. Elsewhere, theout
array will retain its original value. Note that if an uninitializedout
array is created via the defaultout=None
, locations within it where the condition is False will remain uninitialized. - **kwargs
-
For other keyword-only arguments, see the ufunc docs.
- Returns
-
- ybool (scalar) or boolean ndarray
-
True where
x
is positive or negative infinity, false otherwise. This is a scalar ifx
is a scalar.
Notes
NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754).
Errors result if the second argument is supplied when the first argument is a scalar, or if the first and second arguments have different shapes.
Examples
>>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.NINF) True >>> np.isinf([np.inf, -np.inf, 1.0, np.nan]) array([ True, True, False, False])
>>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([2, 2, 2]) >>> np.isinf(x, y) array([1, 0, 1]) >>> y array([1, 0, 1])
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.isinf.html