On this page
numpy.issubdtype
- numpy.issubdtype(arg1, arg2)[source]
-
Returns True if first argument is a typecode lower/equal in type hierarchy.
This is like the builtin
issubclass, but fordtypes.- Parameters
-
- arg1, arg2dtype_like
-
dtypeor object coercible to one
- Returns
-
- outbool
See also
- Scalars
-
Overview of the numpy type hierarchy.
issubsctype,issubclass_
Examples
issubdtypecan be used to check the type of arrays:>>> ints = np.array([1, 2, 3], dtype=np.int32) >>> np.issubdtype(ints.dtype, np.integer) True >>> np.issubdtype(ints.dtype, np.floating) False>>> floats = np.array([1, 2, 3], dtype=np.float32) >>> np.issubdtype(floats.dtype, np.integer) False >>> np.issubdtype(floats.dtype, np.floating) TrueSimilar types of different sizes are not subdtypes of each other:
>>> np.issubdtype(np.float64, np.float32) False >>> np.issubdtype(np.float32, np.float64) Falsebut both are subtypes of
floating:>>> np.issubdtype(np.float64, np.floating) True >>> np.issubdtype(np.float32, np.floating) TrueFor convenience, dtype-like objects are allowed too:
>>> np.issubdtype('S1', np.string_) True >>> np.issubdtype('i4', np.signedinteger) True
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.issubdtype.html