On this page
numpy.polynomial.chebyshev.Chebyshev.interpolate
method
- classmethodpolynomial.chebyshev.Chebyshev.interpolate(func, deg, domain=None, args=())[source]
-
Interpolate a function at the Chebyshev points of the first kind.
Returns the series that interpolates
funcat the Chebyshev points of the first kind scaled and shifted to thedomain. The resulting series tends to a minmax approximation offuncwhen the function is continuous in the domain.New in version 1.14.0.
- Parameters
-
- funcfunction
-
The function to be interpolated. It must be a function of a single variable of the form
f(x, a, b, c...), wherea, b, c...are extra arguments passed in theargsparameter. - degint
-
Degree of the interpolating polynomial.
- domain{None, [beg, end]}, optional
-
Domain over which
funcis interpolated. The default is None, in which case the domain is [-1, 1]. - argstuple, optional
-
Extra arguments to be used in the function call. Default is no extra arguments.
- Returns
-
- polynomialChebyshev instance
-
Interpolating Chebyshev instance.
Notes
See
numpy.polynomial.chebfromfunctionfor more details.
© 2005–2022 NumPy Developers
Licensed under the 3-clause BSD License.
https://numpy.org/doc/1.23/reference/generated/numpy.polynomial.chebyshev.Chebyshev.interpolate.html