On this page
pandas.Series
class pandas.Series(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False)[source]-
One-dimensional ndarray with axis labels (including time series).
Labels need not be unique but must be any hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index. Statistical methods from ndarray have been overridden to automatically exclude missing data (currently represented as NaN)
Operations between Series (+, -, /, , *) align values based on their associated index values– they need not be the same length. The result index will be the sorted union of the two indexes.
Parameters: data : array-like, dict, or scalar value
Contains data stored in Series
index : array-like or Index (1d)
Values must be unique and hashable, same length as data. Index object (or other iterable of same length as data) Will default to RangeIndex(len(data)) if not provided. If both a dict and index sequence are used, the index will override the keys found in the dict.
dtype : numpy.dtype or None
If None, dtype will be inferred
copy : boolean, default False
Copy input data
Attributes
Treturn the transpose, which is by definition self asobjectreturn object Series which contains boxed values atFast label-based scalar accessor axesReturn a list of the row axis labels basereturn the base object if the memory of the underlying data is blocksInternal property, property synonym for as_blocks() datareturn the data pointer of the underlying data dtypereturn the dtype object of the underlying data dtypesreturn the dtype object of the underlying data emptyTrue if NDFrame is entirely empty [no items], meaning any of the axes are of length 0. flagsftypereturn if the data is sparse|dense ftypesreturn if the data is sparse|dense hasnansiatFast integer location scalar accessor. ilocPurely integer-location based indexing for selection by position. imagis_copyis_monotonicReturn boolean if values in the object are is_monotonic_decreasingReturn boolean if values in the object are is_monotonic_increasingReturn boolean if values in the object are is_time_seriesis_uniqueReturn boolean if values in the object are unique itemsizereturn the size of the dtype of the item of the underlying data ixA primarily label-location based indexer, with integer position fallback. locPurely label-location based indexer for selection by label. namenbytesreturn the number of bytes in the underlying data ndimreturn the number of dimensions of the underlying data, realshapereturn a tuple of the shape of the underlying data sizereturn the number of elements in the underlying data stridesreturn the strides of the underlying data valuesReturn Series as ndarray or ndarray-like Methods
abs()Return an object with absolute value taken–only applicable to objects that are all numeric. add(other[, level, fill_value, axis])Addition of series and other, element-wise (binary operator add).add_prefix(prefix)Concatenate prefix string with panel items names. add_suffix(suffix)Concatenate suffix string with panel items names. align(other[, join, axis, level, copy, ...])Align two object on their axes with the all([axis, bool_only, skipna, level])Return whether all elements are True over requested axis any([axis, bool_only, skipna, level])Return whether any element is True over requested axis append(to_append[, ignore_index, ...])Concatenate two or more Series. apply(func[, convert_dtype, args])Invoke function on values of Series. argmax([axis, skipna])Index of first occurrence of maximum of values. argmin([axis, skipna])Index of first occurrence of minimum of values. argsort([axis, kind, order])Overrides ndarray.argsort. as_blocks([copy])Convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype. as_matrix([columns])Convert the frame to its Numpy-array representation. asfreq(freq[, method, how, normalize])Convert TimeSeries to specified frequency. asof(where[, subset])The last row without any NaN is taken (or the last row without astype(dtype[, copy, raise_on_error])Cast object to input numpy.dtype at_time(time[, asof])Select values at particular time of day (e.g. autocorr([lag])Lag-N autocorrelation between(left, right[, inclusive])Return boolean Series equivalent to left <= series <= right. between_time(start_time, end_time[, ...])Select values between particular times of the day (e.g., 9:00-9:30 AM). bfill([axis, inplace, limit, downcast])Synonym for NDFrame.fillna(method=’bfill’) bool()Return the bool of a single element PandasObject. catalias of CategoricalAccessorclip([lower, upper, axis])Trim values at input threshold(s). clip_lower(threshold[, axis])Return copy of the input with values below given value(s) truncated. clip_upper(threshold[, axis])Return copy of input with values above given value(s) truncated. combine(other, func[, fill_value])Perform elementwise binary operation on two Series using given function combine_first(other)Combine Series values, choosing the calling Series’s values first. compound([axis, skipna, level])Return the compound percentage of the values for the requested axis compress(condition, \*args, \*\*kwargs)Return selected slices of an array along given axis as a Series consolidate([inplace])Compute NDFrame with “consolidated” internals (data of each dtype grouped together in a single ndarray). convert_objects([convert_dates, ...])Deprecated. copy([deep])Make a copy of this objects data. corr(other[, method, min_periods])Compute correlation with otherSeries, excluding missing valuescount([level])Return number of non-NA/null observations in the Series cov(other[, min_periods])Compute covariance with Series, excluding missing values cummax([axis, skipna])Return cumulative max over requested axis. cummin([axis, skipna])Return cumulative minimum over requested axis. cumprod([axis, skipna])Return cumulative product over requested axis. cumsum([axis, skipna])Return cumulative sum over requested axis. describe([percentiles, include, exclude])Generate various summary statistics, excluding NaN values. diff([periods])1st discrete difference of object div(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator truediv).divide(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator truediv).dot(other)Matrix multiplication with DataFrame or inner-product with Series drop(labels[, axis, level, inplace, errors])Return new object with labels in requested axis removed. drop_duplicates(\*args, \*\*kwargs)Return Series with duplicate values removed dropna([axis, inplace])Return Series without null values dtalias of CombinedDatetimelikePropertiesduplicated(\*args, \*\*kwargs)Return boolean Series denoting duplicate values eq(other[, level, fill_value, axis])Equal to of series and other, element-wise (binary operator eq).equals(other)Determines if two NDFrame objects contain the same elements. ewm([com, span, halflife, alpha, ...])Provides exponential weighted functions expanding([min_periods, freq, center, axis])Provides expanding transformations. factorize([sort, na_sentinel])Encode the object as an enumerated type or categorical variable ffill([axis, inplace, limit, downcast])Synonym for NDFrame.fillna(method=’ffill’) fillna([value, method, axis, inplace, ...])Fill NA/NaN values using the specified method filter([items, like, regex, axis])Subset rows or columns of dataframe according to labels in the specified index. first(offset)Convenience method for subsetting initial periods of time series data based on a date offset. first_valid_index()Return label for first non-NA/null value floordiv(other[, level, fill_value, axis])Integer division of series and other, element-wise (binary operator floordiv).from_array(arr[, index, name, dtype, copy, ...])from_csv(path[, sep, parse_dates, header, ...])Read CSV file (DISCOURAGED, please use pandas.read_csv()instead).ge(other[, level, fill_value, axis])Greater than or equal to of series and other, element-wise (binary operator ge).get(key[, default])Get item from object for given key (DataFrame column, Panel slice, etc.). get_dtype_counts()Return the counts of dtypes in this object. get_ftype_counts()Return the counts of ftypes in this object. get_value(label[, takeable])Quickly retrieve single value at passed index label get_values()same as values (but handles sparseness conversions); is a view groupby([by, axis, level, as_index, sort, ...])Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns. gt(other[, level, fill_value, axis])Greater than of series and other, element-wise (binary operator gt).head([n])Returns first n rows hist([by, ax, grid, xlabelsize, xrot, ...])Draw histogram of the input series using matplotlib idxmax([axis, skipna])Index of first occurrence of maximum of values. idxmin([axis, skipna])Index of first occurrence of minimum of values. iget(i[, axis])DEPRECATED. iget_value(i[, axis])DEPRECATED. interpolate([method, axis, limit, inplace, ...])Interpolate values according to different methods. irow(i[, axis])DEPRECATED. isin(values)Return a boolean Seriesshowing whether each element in theSeriesis exactly contained in the passed sequence ofvalues.isnull()Return a boolean same-sized object indicating if the values are null. item()return the first element of the underlying data as a python iteritems()Lazily iterate over (index, value) tuples iterkv(\*args, \*\*kwargs)iteritems alias used to get around 2to3. Deprecated keys()Alias for index kurt([axis, skipna, level, numeric_only])Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). kurtosis([axis, skipna, level, numeric_only])Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). last(offset)Convenience method for subsetting final periods of time series data based on a date offset. last_valid_index()Return label for last non-NA/null value le(other[, level, fill_value, axis])Less than or equal to of series and other, element-wise (binary operator le).lt(other[, level, fill_value, axis])Less than of series and other, element-wise (binary operator lt).mad([axis, skipna, level])Return the mean absolute deviation of the values for the requested axis map(arg[, na_action])Map values of Series using input correspondence (which can be mask(cond[, other, inplace, axis, level, ...])Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. max([axis, skipna, level, numeric_only])This method returns the maximum of the values in the object. mean([axis, skipna, level, numeric_only])Return the mean of the values for the requested axis median([axis, skipna, level, numeric_only])Return the median of the values for the requested axis memory_usage([index, deep])Memory usage of the Series min([axis, skipna, level, numeric_only])This method returns the minimum of the values in the object. mod(other[, level, fill_value, axis])Modulo of series and other, element-wise (binary operator mod).mode()Returns the mode(s) of the dataset. mul(other[, level, fill_value, axis])Multiplication of series and other, element-wise (binary operator mul).multiply(other[, level, fill_value, axis])Multiplication of series and other, element-wise (binary operator mul).ne(other[, level, fill_value, axis])Not equal to of series and other, element-wise (binary operator ne).nlargest(\*args, \*\*kwargs)Return the largest nelements.nonzero()Return the indices of the elements that are non-zero notnull()Return a boolean same-sized object indicating if the values are not null. nsmallest(\*args, \*\*kwargs)Return the smallest nelements.nunique([dropna])Return number of unique elements in the object. order([na_last, ascending, kind, ...])DEPRECATED: use Series.sort_values()pct_change([periods, fill_method, limit, freq])Percent change over given number of periods. pipe(func, \*args, \*\*kwargs)Apply func(self, *args, **kwargs) plotalias of SeriesPlotMethodspop(item)Return item and drop from frame. pow(other[, level, fill_value, axis])Exponential power of series and other, element-wise (binary operator pow).prod([axis, skipna, level, numeric_only])Return the product of the values for the requested axis product([axis, skipna, level, numeric_only])Return the product of the values for the requested axis ptp([axis, skipna, level, numeric_only])Returns the difference between the maximum value and the minimum value in the object. put(\*args, \*\*kwargs)Applies the putmethod to itsvaluesattribute if it has one.quantile([q, interpolation])Return value at the given quantile, a la numpy.percentile. radd(other[, level, fill_value, axis])Addition of series and other, element-wise (binary operator radd).rank([axis, method, numeric_only, ...])Compute numerical data ranks (1 through n) along axis. ravel([order])Return the flattened underlying data as an ndarray rdiv(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator rtruediv).reindex([index])Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. reindex_axis(labels[, axis])for compatibility with higher dims reindex_like(other[, method, copy, limit, ...])Return an object with matching indices to myself. rename([index])Alter axes input function or functions. rename_axis(mapper[, axis, copy, inplace])Alter index and / or columns using input function or functions. reorder_levels(order)Rearrange index levels using input order. repeat(reps, \*args, \*\*kwargs)Repeat elements of an Series. replace([to_replace, value, inplace, limit, ...])Replace values given in ‘to_replace’ with ‘value’. resample(rule[, how, axis, fill_method, ...])Convenience method for frequency conversion and resampling of time series. reset_index([level, drop, name, inplace])Analogous to the pandas.DataFrame.reset_index()function, see docstring there.reshape(\*args, \*\*kwargs)DEPRECATED: calling this method will raise an error in a future release. rfloordiv(other[, level, fill_value, axis])Integer division of series and other, element-wise (binary operator rfloordiv).rmod(other[, level, fill_value, axis])Modulo of series and other, element-wise (binary operator rmod).rmul(other[, level, fill_value, axis])Multiplication of series and other, element-wise (binary operator rmul).rolling(window[, min_periods, freq, center, ...])Provides rolling window calculcations. round([decimals])Round each value in a Series to the given number of decimals. rpow(other[, level, fill_value, axis])Exponential power of series and other, element-wise (binary operator rpow).rsub(other[, level, fill_value, axis])Subtraction of series and other, element-wise (binary operator rsub).rtruediv(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator rtruediv).sample([n, frac, replace, weights, ...])Returns a random sample of items from an axis of object. searchsorted(v[, side, sorter])Find indices where elements should be inserted to maintain order. select(crit[, axis])Return data corresponding to axis labels matching criteria sem([axis, skipna, level, ddof, numeric_only])Return unbiased standard error of the mean over requested axis. set_axis(axis, labels)public verson of axis assignment set_value(label, value[, takeable])Quickly set single value at passed label. shift([periods, freq, axis])Shift index by desired number of periods with an optional time freq skew([axis, skipna, level, numeric_only])Return unbiased skew over requested axis slice_shift([periods, axis])Equivalent to shiftwithout copying data.sort([axis, ascending, kind, na_position, ...])DEPRECATED: use Series.sort_values(inplace=True)()for INPLACEsort_index([axis, level, ascending, ...])Sort object by labels (along an axis) sort_values([axis, ascending, inplace, ...])Sort by the values along either axis sortlevel([level, ascending, sort_remaining])Sort Series with MultiIndex by chosen level. squeeze(\*\*kwargs)Squeeze length 1 dimensions. std([axis, skipna, level, ddof, numeric_only])Return sample standard deviation over requested axis. stralias of StringMethodssub(other[, level, fill_value, axis])Subtraction of series and other, element-wise (binary operator sub).subtract(other[, level, fill_value, axis])Subtraction of series and other, element-wise (binary operator sub).sum([axis, skipna, level, numeric_only])Return the sum of the values for the requested axis swapaxes(axis1, axis2[, copy])Interchange axes and swap values axes appropriately swaplevel([i, j, copy])Swap levels i and j in a MultiIndex tail([n])Returns last n rows take(indices[, axis, convert, is_copy])return Series corresponding to requested indices to_clipboard([excel, sep])Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. to_csv([path, index, sep, na_rep, ...])Write Series to a comma-separated values (csv) file to_dense()Return dense representation of NDFrame (as opposed to sparse) to_dict()Convert Series to {label -> value} dict to_frame([name])Convert Series to DataFrame to_hdf(path_or_buf, key, \*\*kwargs)Write the contained data to an HDF5 file using HDFStore. to_json([path_or_buf, orient, date_format, ...])Convert the object to a JSON string. to_msgpack([path_or_buf, encoding])msgpack (serialize) object to input file path to_period([freq, copy])Convert Series from DatetimeIndex to PeriodIndex with desired to_pickle(path)Pickle (serialize) object to input file path. to_sparse([kind, fill_value])Convert Series to SparseSeries to_sql(name, con[, flavor, schema, ...])Write records stored in a DataFrame to a SQL database. to_string([buf, na_rep, float_format, ...])Render a string representation of the Series to_timestamp([freq, how, copy])Cast to datetimeindex of timestamps, at beginning of period to_xarray()Return an xarray object from the pandas object. tolist()Convert Series to a nested list transpose(\*args, \*\*kwargs)return the transpose, which is by definition self truediv(other[, level, fill_value, axis])Floating division of series and other, element-wise (binary operator truediv).truncate([before, after, axis, copy])Truncates a sorted NDFrame before and/or after some particular index value. tshift([periods, freq, axis])Shift the time index, using the index’s frequency if available. tz_convert(tz[, axis, level, copy])Convert tz-aware axis to target time zone. tz_localize(\*args, \*\*kwargs)Localize tz-naive TimeSeries to target time zone. unique()Return np.ndarray of unique values in the object. unstack([level, fill_value])Unstack, a.k.a. update(other)Modify Series in place using non-NA values from passed Series. valid([inplace])value_counts([normalize, sort, ascending, ...])Returns object containing counts of unique values. var([axis, skipna, level, ddof, numeric_only])Return unbiased variance over requested axis. view([dtype])where(cond[, other, inplace, axis, level, ...])Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. xs(key[, axis, level, drop_level])Returns a cross-section (row(s) or column(s)) from the Series/DataFrame.
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.19.2/generated/pandas.Series.html