On this page
pandas.Series.drop
Series.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')
[source]-
Return new object with labels in requested axis removed.
Parameters: labels : single label or list-like
Index or column labels to drop.
axis : int or axis name
Whether to drop labels from the index (0 / ‘index’) or columns (1 / ‘columns’).
index, columns : single label or list-like
Alternative to specifying
axis
(labels, axis=1
is equivalent tocolumns=labels
).New in version 0.21.0.
level : int or level name, default None
For MultiIndex
inplace : bool, default False
If True, do operation inplace and return None.
errors : {‘ignore’, ‘raise’}, default ‘raise’
If ‘ignore’, suppress error and existing labels are dropped.
Returns: dropped : type of caller
Notes
Specifying both
labels
andindex
orcolumns
will raise a ValueError.Examples
>>> df = pd.DataFrame(np.arange(12).reshape(3,4), columns=['A', 'B', 'C', 'D']) >>> df A B C D 0 0 1 2 3 1 4 5 6 7 2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1) A D 0 0 3 1 4 7 2 8 11
>>> df.drop(columns=['B', 'C']) A D 0 0 3 1 4 7 2 8 11
Drop a row by index
>>> df.drop([0, 1]) A B C D 2 8 9 10 11
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.22.0/generated/pandas.Series.drop.html