On this page
pandas.CategoricalIndex.map
CategoricalIndex.map(mapper)[source]-
Map values using input correspondence (a dict, Series, or function).
Maps the values (their categories, not the codes) of the index to new categories. If the mapping correspondence is one-to-one the result is a
CategoricalIndexwhich has the same order property as the original, otherwise anIndexis returned.If a
dictorSeriesis used any unmapped category is mapped toNaN. Note that if this happens anIndexwill be returned.Parameters: mapper : function, dict, or Series
Mapping correspondence.
Returns: pandas.CategoricalIndex or pandas.Index
Mapped index.
See also
Index.map-
Apply a mapping correspondence on an
Index. Series.map-
Apply a mapping correspondence on a
Series. Series.apply-
Apply more complex functions on a
Series.
Examples
>>> idx = pd.CategoricalIndex(['a', 'b', 'c']) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=False, dtype='category') >>> idx.map(lambda x: x.upper()) CategoricalIndex(['A', 'B', 'C'], categories=['A', 'B', 'C'], ordered=False, dtype='category') >>> idx.map({'a': 'first', 'b': 'second', 'c': 'third'}) CategoricalIndex(['first', 'second', 'third'], categories=['first', 'second', 'third'], ordered=False, dtype='category')If the mapping is one-to-one the ordering of the categories is preserved:
>>> idx = pd.CategoricalIndex(['a', 'b', 'c'], ordered=True) >>> idx CategoricalIndex(['a', 'b', 'c'], categories=['a', 'b', 'c'], ordered=True, dtype='category') >>> idx.map({'a': 3, 'b': 2, 'c': 1}) CategoricalIndex([3, 2, 1], categories=[3, 2, 1], ordered=True, dtype='category')If the mapping is not one-to-one an
Indexis returned:>>> idx.map({'a': 'first', 'b': 'second', 'c': 'first'}) Index(['first', 'second', 'first'], dtype='object')If a
dictis used, all unmapped categories are mapped toNaNand the result is anIndex:>>> idx.map({'a': 'first', 'b': 'second'}) Index(['first', 'second', nan], dtype='object')
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.CategoricalIndex.map.html