On this page
pandas.DataFrame.any
DataFrame.any(axis=0, bool_only=None, skipna=True, level=None, **kwargs)[source]-
Return whether any element is True over requested axis.
Unlike
DataFrame.all(), this performs an or operation. If any of the values along the specified axis is True, this will return True.Parameters: axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced.
- 0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
- 1 / ‘columns’ : reduce the columns, return a Series whose index is the original index.
- None : reduce all axes, return a scalar.
skipna : boolean, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
level : int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
bool_only : boolean, default None
Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series.
**kwargs : any, default None
Additional keywords have no effect but might be accepted for compatibility with NumPy.
Returns: -
any : Series or DataFrame (if level specified)
See also
pandas.DataFrame.all- Return whether all elements are True.
Examples
Series
For Series input, the output is a scalar indicating whether any element is True.
>>> pd.Series([True, False]).any() TrueDataFrame
Whether each column contains at least one True element (the default).
>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]}) >>> df A B C 0 1 0 0 1 2 2 0>>> df.any() A True B True C False dtype: boolAggregating over the columns.
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]}) >>> df A B 0 True 1 1 False 2>>> df.any(axis='columns') 0 True 1 True dtype: bool>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]}) >>> df A B 0 True 1 1 False 0>>> df.any(axis='columns') 0 True 1 False dtype: boolAggregating over the entire DataFrame with
axis=None.>>> df.any(axis=None) Trueanyfor an empty DataFrame is an empty Series.>>> pd.DataFrame([]).any() Series([], dtype: bool)
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.any.html