On this page
pandas.Series.isnull
Series.isnull()[source]-
Detect missing values.
Return a boolean same-sized object indicating if the values are NA. NA values, such as None or
numpy.NaN, gets mapped to True values. Everything else gets mapped to False values. Characters such as empty strings''ornumpy.infare not considered NA values (unless you setpandas.options.mode.use_inf_as_na = True).Returns: Series
Mask of bool values for each element in Series that indicates whether an element is not an NA value.
See also
Series.isnull- alias of isna
Series.notna- boolean inverse of isna
Series.dropna- omit axes labels with missing values
isna- top-level isna
Examples
Show which entries in a DataFrame are NA.
>>> df = pd.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5.0 NaT Alfred None 1 6.0 1939-05-27 Batman Batmobile 2 NaN 1940-04-25 Joker>>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False FalseShow which entries in a Series are NA.
>>> ser = pd.Series([5, 6, np.NaN]) >>> ser 0 5.0 1 6.0 2 NaN dtype: float64>>> ser.isna() 0 False 1 False 2 True dtype: bool
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Series.isnull.html