On this page
pandas.DataFrame.join
DataFrame.join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)[source]-
Join columns of another DataFrame.
Join columns with
otherDataFrame either on index or on a key column. Efficiently join multiple DataFrame objects by index at once by passing a list.Parameters: -
other : DataFrame, Series, or list of DataFrame -
Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame.
-
on : str, list of str, or array-like, optional -
Column or index level name(s) in the caller to join on the index in
other, otherwise joins index-on-index. If multiple values given, theotherDataFrame must have a MultiIndex. Can pass an array as the join key if it is not already contained in the calling DataFrame. Like an Excel VLOOKUP operation. -
how : {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘left’ -
How to handle the operation of the two objects.
- left: use calling frame’s index (or column if on is specified)
- right: use
other’s index. - outer: form union of calling frame’s index (or column if on is specified) with
other’s index, and sort it. lexicographically. - inner: form intersection of calling frame’s index (or column if on is specified) with
other’s index, preserving the order of the calling’s one.
-
lsuffix : str, default ‘’ -
Suffix to use from left frame’s overlapping columns.
-
rsuffix : str, default ‘’ -
Suffix to use from right frame’s overlapping columns.
-
sort : bool, default False -
Order result DataFrame lexicographically by the join key. If False, the order of the join key depends on the join type (how keyword).
Returns: - DataFrame
-
A dataframe containing columns from both the caller and
other.
See also
DataFrame.merge- For column(s)-on-columns(s) operations.
Notes
Parameters
on,lsuffix, andrsuffixare not supported when passing a list ofDataFrameobjects.Support for specifying index levels as the
onparameter was added in version 0.23.0.Examples
>>> df = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']})>>> df key A 0 K0 A0 1 K1 A1 2 K2 A2 3 K3 A3 4 K4 A4 5 K5 A5>>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']})>>> other key B 0 K0 B0 1 K1 B1 2 K2 B2Join DataFrames using their indexes.
>>> df.join(other, lsuffix='_caller', rsuffix='_other') key_caller A key_other B 0 K0 A0 K0 B0 1 K1 A1 K1 B1 2 K2 A2 K2 B2 3 K3 A3 NaN NaN 4 K4 A4 NaN NaN 5 K5 A5 NaN NaNIf we want to join using the key columns, we need to set key to be the index in both
dfandother. The joined DataFrame will have key as its index.>>> df.set_index('key').join(other.set_index('key')) A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaNAnother option to join using the key columns is to use the
onparameter. DataFrame.join always usesother’s index but we can use any column indf. This method preserves the original DataFrame’s index in the result.>>> df.join(other.set_index('key'), on='key') key A B 0 K0 A0 B0 1 K1 A1 B1 2 K2 A2 B2 3 K3 A3 NaN 4 K4 A4 NaN 5 K5 A5 NaN -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.join.html