On this page
pandas.array
pandas.array(data, dtype=None, copy=True)
[source]-
Create an array.
New in version 0.24.0.
Parameters: -
data : Sequence of objects
-
The scalars inside
data
should be instances of the scalar type fordtype
. It’s expected thatdata
represents a 1-dimensional array of data.When
data
is an Index or Series, the underlying array will be extracted fromdata
. -
dtype : str, np.dtype, or ExtensionDtype, optional
-
The dtype to use for the array. This may be a NumPy dtype or an extension type registered with pandas using
pandas.api.extensions.register_extension_dtype()
.If not specified, there are two possibilities:
- When
data
is aSeries
,Index
, orExtensionArray
, thedtype
will be taken from the data. - Otherwise, pandas will attempt to infer the
dtype
from the data.
Note that when
data
is a NumPy array,data.dtype
is not used for inferring the array type. This is because NumPy cannot represent all the types of data that can be held in extension arrays.Currently, pandas will infer an extension dtype for sequences of
Scalar Type Array Type pandas.Interval
pandas.arrays.IntervalArray
pandas.Period
pandas.arrays.PeriodArray
datetime.datetime
pandas.arrays.DatetimeArray
datetime.timedelta
pandas.arrays.TimedeltaArray
For all other cases, NumPy’s usual inference rules will be used.
- When
-
copy : bool, default True
-
Whether to copy the data, even if not necessary. Depending on the type of
data
, creating the new array may require copying data, even ifcopy=False
.
Returns: - ExtensionArray
-
The newly created array.
Raises: - ValueError
-
When
data
is not 1-dimensional.
See also
numpy.array
- Construct a NumPy array.
Series
- Construct a pandas Series.
Index
- Construct a pandas Index.
arrays.PandasArray
- ExtensionArray wrapping a NumPy array.
Series.array
- Extract the array stored within a Series.
Notes
Omitting the
dtype
argument means pandas will attempt to infer the best array type from the values in the data. As new array types are added by pandas and 3rd party libraries, the “best” array type may change. We recommend specifyingdtype
to ensure that- the correct array type for the data is returned
- the returned array type doesn’t change as new extension types are added by pandas and third-party libraries
Additionally, if the underlying memory representation of the returned array matters, we recommend specifying the
dtype
as a concrete object rather than a string alias or allowing it to be inferred. For example, a future version of pandas or a 3rd-party library may include a dedicated ExtensionArray for string data. In this event, the following would no longer return aarrays.PandasArray
backed by a NumPy array.>>> pd.array(['a', 'b'], dtype=str) <PandasArray> ['a', 'b'] Length: 2, dtype: str32
This would instead return the new ExtensionArray dedicated for string data. If you really need the new array to be backed by a NumPy array, specify that in the dtype.
>>> pd.array(['a', 'b'], dtype=np.dtype("<U1")) <PandasArray> ['a', 'b'] Length: 2, dtype: str32
Or use the dedicated constructor for the array you’re expecting, and wrap that in a PandasArray
>>> pd.array(np.array(['a', 'b'], dtype='<U1')) <PandasArray> ['a', 'b'] Length: 2, dtype: str32
Finally, Pandas has arrays that mostly overlap with NumPy
When data with a
datetime64[ns]
ortimedelta64[ns]
dtype is passed, pandas will always return aDatetimeArray
orTimedeltaArray
rather than aPandasArray
. This is for symmetry with the case of timezone-aware data, which NumPy does not natively support.>>> pd.array(['2015', '2016'], dtype='datetime64[ns]') <DatetimeArray> ['2015-01-01 00:00:00', '2016-01-01 00:00:00'] Length: 2, dtype: datetime64[ns]
>>> pd.array(["1H", "2H"], dtype='timedelta64[ns]') <TimedeltaArray> ['01:00:00', '02:00:00'] Length: 2, dtype: timedelta64[ns]
Examples
If a dtype is not specified,
data
is passed through tonumpy.array()
, and aarrays.PandasArray
is returned.>>> pd.array([1, 2]) <PandasArray> [1, 2] Length: 2, dtype: int64
Or the NumPy dtype can be specified
>>> pd.array([1, 2], dtype=np.dtype("int32")) <PandasArray> [1, 2] Length: 2, dtype: int32
You can use the string alias for
dtype
>>> pd.array(['a', 'b', 'a'], dtype='category') [a, b, a] Categories (2, object): [a, b]
Or specify the actual dtype
>>> pd.array(['a', 'b', 'a'], ... dtype=pd.CategoricalDtype(['a', 'b', 'c'], ordered=True)) [a, b, a] Categories (3, object): [a < b < c]
Because omitting the
dtype
passes the data through to NumPy, a mixture of valid integers and NA will return a floating-point NumPy array.>>> pd.array([1, 2, np.nan]) <PandasArray> [1.0, 2.0, nan] Length: 3, dtype: float64
To use pandas’ nullable
pandas.arrays.IntegerArray
, specify the dtype:>>> pd.array([1, 2, np.nan], dtype='Int64') <IntegerArray> [1, 2, NaN] Length: 3, dtype: Int64
Pandas will infer an ExtensionArray for some types of data:
>>> pd.array([pd.Period('2000', freq="D"), pd.Period("2000", freq="D")]) <PeriodArray> ['2000-01-01', '2000-01-01'] Length: 2, dtype: period[D]
data
must be 1-dimensional. A ValueError is raised when the input has the wrong dimensionality.>>> pd.array(1) Traceback (most recent call last): ... ValueError: Cannot pass scalar '1' to 'pandas.array'.
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.array.html