On this page
pandas.core.window.Expanding.kurt
Expanding.kurt(**kwargs)
[source]-
Calculate unbiased expanding kurtosis.
This function uses Fisher’s definition of kurtosis without bias.
Parameters: - **kwargs
-
Under Review.
Returns: - Series or DataFrame
-
Returned object type is determined by the caller of the expanding calculation
See also
Series.expanding
- Calling object with Series data.
DataFrame.expanding
- Calling object with DataFrames.
Series.kurt
- Equivalent method for Series.
DataFrame.kurt
- Equivalent method for DataFrame.
scipy.stats.skew
- Third moment of a probability density.
scipy.stats.kurtosis
- Reference SciPy method.
Notes
A minimum of 4 periods is required for the expanding calculation.
Examples
The example below will show an expanding calculation with a window size of four matching the equivalent function call using
scipy.stats
.>>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> fmt = "{0:.6f}" # limit the printed precision to 6 digits >>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False))) -1.200000 >>> print(fmt.format(scipy.stats.kurtosis(arr, bias=False))) 4.999874 >>> s = pd.Series(arr) >>> s.expanding(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 4.999874 dtype: float64
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.core.window.Expanding.kurt.html