On this page
pandas.cut
pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise')
[source]-
Bin values into discrete intervals.
Use
cut
when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example,cut
could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins.Parameters: -
x : array-like
-
The input array to be binned. Must be 1-dimensional.
-
bins : int, sequence of scalars, or pandas.IntervalIndex
-
The criteria to bin by.
- int : Defines the number of equal-width bins in the range of
x
. The range ofx
is extended by .1% on each side to include the minimum and maximum values ofx
. - sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of
x
is done. - IntervalIndex : Defines the exact bins to be used. Note that IntervalIndex for
bins
must be non-overlapping.
- int : Defines the number of equal-width bins in the range of
-
right : bool, default True
-
Indicates whether
bins
includes the rightmost edge or not. Ifright == True
(the default), then thebins
[1, 2, 3, 4]
indicate (1,2], (2,3], (3,4]. This argument is ignored whenbins
is an IntervalIndex. -
labels : array or bool, optional
-
Specifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when
bins
is an IntervalIndex. -
retbins : bool, default False
-
Whether to return the bins or not. Useful when bins is provided as a scalar.
-
precision : int, default 3
-
The precision at which to store and display the bins labels.
-
include_lowest : bool, default False
-
Whether the first interval should be left-inclusive or not.
-
duplicates : {default ‘raise’, ‘drop’}, optional
-
If bin edges are not unique, raise ValueError or drop non-uniques.
New in version 0.23.0.
Returns: -
out : pandas.Categorical, Series, or ndarray
-
An array-like object representing the respective bin for each value of
x
. The type depends on the value oflabels
.- True (default) : returns a Series for Series
x
or a pandas.Categorical for all other inputs. The values stored within are Interval dtype. - sequence of scalars : returns a Series for Series
x
or a pandas.Categorical for all other inputs. The values stored within are whatever the type in the sequence is. - False : returns an ndarray of integers.
- True (default) : returns a Series for Series
-
bins : numpy.ndarray or IntervalIndex.
-
The computed or specified bins. Only returned when
retbins=True
. For scalar or sequencebins
, this is an ndarray with the computed bins. If setduplicates=drop
,bins
will drop non-unique bin. For an IntervalIndexbins
, this is equal tobins
.
See also
qcut
- Discretize variable into equal-sized buckets based on rank or based on sample quantiles.
pandas.Categorical
- Array type for storing data that come from a fixed set of values.
Series
- One-dimensional array with axis labels (including time series).
pandas.IntervalIndex
- Immutable Index implementing an ordered, sliceable set.
Notes
Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or pandas.Categorical object.
Examples
Discretize into three equal-sized bins.
>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... # doctest: +ELLIPSIS [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ...
>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True) ... # doctest: +ELLIPSIS ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... array([0.994, 3. , 5. , 7. ]))
Discovers the same bins, but assign them specific labels. Notice that the returned Categorical’s categories are
labels
and is ordered.>>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), ... 3, labels=["bad", "medium", "good"]) [bad, good, medium, medium, good, bad] Categories (3, object): [bad < medium < good]
labels=False
implies you just want the bins back.>>> pd.cut([0, 1, 1, 2], bins=4, labels=False) array([0, 1, 1, 3])
Passing a Series as an input returns a Series with categorical dtype:
>>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, 3) ... # doctest: +ELLIPSIS a (1.992, 4.667] b (1.992, 4.667] c (4.667, 7.333] d (7.333, 10.0] e (7.333, 10.0] dtype: category Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ...
Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based on bins.
>>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False) ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 4.0 dtype: float64, array([0, 2, 4, 6, 8]))
Use
drop
optional when bins is not unique>>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True, ... right=False, duplicates='drop') ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 3.0 dtype: float64, array([0, 2, 4, 6, 8]))
Passing an IntervalIndex for
bins
results in those categories exactly. Notice that values not covered by the IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between two bins.>>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins) [NaN, (0, 1], NaN, (2, 3], (4, 5]] Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]]
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.cut.html