On this page
pandas.DataFrame.ne
DataFrame.ne(other, axis='columns', level=None)[source]-
Not equal to of dataframe and other, element-wise (binary operator
ne).Among flexible wrappers (
eq,ne,le,lt,ge,gt) to comparison operators.Equivalent to
==,=!,<=,<,>=,>with support to choose axis (rows or columns) and level for comparison.Parameters: -
other : scalar, sequence, Series, or DataFrame -
Any single or multiple element data structure, or list-like object.
-
axis : {0 or ‘index’, 1 or ‘columns’}, default ‘columns’ -
Whether to compare by the index (0 or ‘index’) or columns (1 or ‘columns’).
-
level : int or label -
Broadcast across a level, matching Index values on the passed MultiIndex level.
Returns: - DataFrame of bool
-
Result of the comparison.
See also
DataFrame.eq- Compare DataFrames for equality elementwise.
DataFrame.ne- Compare DataFrames for inequality elementwise.
DataFrame.le- Compare DataFrames for less than inequality or equality elementwise.
DataFrame.lt- Compare DataFrames for strictly less than inequality elementwise.
DataFrame.ge- Compare DataFrames for greater than inequality or equality elementwise.
DataFrame.gt- Compare DataFrames for strictly greater than inequality elementwise.
Notes
Mismatched indices will be unioned together.
NaNvalues are considered different (i.e.NaN!=NaN).Examples
>>> df = pd.DataFrame({'cost': [250, 150, 100], ... 'revenue': [100, 250, 300]}, ... index=['A', 'B', 'C']) >>> df cost revenue A 250 100 B 150 250 C 100 300Comparison with a scalar, using either the operator or method:
>>> df == 100 cost revenue A False True B False False C True False>>> df.eq(100) cost revenue A False True B False False C True FalseWhen
otheris aSeries, the columns of a DataFrame are aligned with the index ofotherand broadcast:>>> df != pd.Series([100, 250], index=["cost", "revenue"]) cost revenue A True True B True False C False TrueUse the method to control the broadcast axis:
>>> df.ne(pd.Series([100, 300], index=["A", "D"]), axis='index') cost revenue A True False B True True C True True D True TrueWhen comparing to an arbitrary sequence, the number of columns must match the number elements in
other:>>> df == [250, 100] cost revenue A True True B False False C False FalseUse the method to control the axis:
>>> df.eq([250, 250, 100], axis='index') cost revenue A True False B False True C True FalseCompare to a DataFrame of different shape.
>>> other = pd.DataFrame({'revenue': [300, 250, 100, 150]}, ... index=['A', 'B', 'C', 'D']) >>> other revenue A 300 B 250 C 100 D 150>>> df.gt(other) cost revenue A False False B False False C False True D False FalseCompare to a MultiIndex by level.
>>> df_multindex = pd.DataFrame({'cost': [250, 150, 100, 150, 300, 220], ... 'revenue': [100, 250, 300, 200, 175, 225]}, ... index=[['Q1', 'Q1', 'Q1', 'Q2', 'Q2', 'Q2'], ... ['A', 'B', 'C', 'A', 'B', 'C']]) >>> df_multindex cost revenue Q1 A 250 100 B 150 250 C 100 300 Q2 A 150 200 B 300 175 C 220 225>>> df.le(df_multindex, level=1) cost revenue Q1 A True True B True True C True True Q2 A False True B True False C True False -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.ne.html