On this page
pandas.DataFrame.plot
DataFrame.plot(x=None, y=None, kind='line', ax=None, subplots=False, sharex=None, sharey=False, layout=None, figsize=None, use_index=True, title=None, grid=None, legend=True, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, secondary_y=False, sort_columns=False, **kwds)
[source]-
Make plots of DataFrame using matplotlib / pylab.
New in version 0.17.0: Each plot kind has a corresponding method on the
DataFrame.plot
accessor:df.plot(kind='line')
is equivalent todf.plot.line()
.Parameters: -
data : DataFrame
-
x : label or position, default None
-
y : label, position or list of label, positions, default None
-
Allows plotting of one column versus another
-
kind : str
-
- ‘line’ : line plot (default)
- ‘bar’ : vertical bar plot
- ‘barh’ : horizontal bar plot
- ‘hist’ : histogram
- ‘box’ : boxplot
- ‘kde’ : Kernel Density Estimation plot
- ‘density’ : same as ‘kde’
- ‘area’ : area plot
- ‘pie’ : pie plot
- ‘scatter’ : scatter plot
- ‘hexbin’ : hexbin plot
-
ax : matplotlib axes object, default None
-
subplots : boolean, default False
-
Make separate subplots for each column
-
sharex : boolean, default True if ax is None else False
-
In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and sharex=True will alter all x axis labels for all axis in a figure!
-
sharey : boolean, default False
-
In case subplots=True, share y axis and set some y axis labels to invisible
-
layout : tuple (optional)
-
(rows, columns) for the layout of subplots
-
figsize : a tuple (width, height) in inches
-
use_index : boolean, default True
-
Use index as ticks for x axis
-
title : string or list
-
Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and
subplots
is True, print each item in the list above the corresponding subplot. -
grid : boolean, default None (matlab style default)
-
Axis grid lines
-
legend : False/True/’reverse’
-
Place legend on axis subplots
-
style : list or dict
-
matplotlib line style per column
-
logx : boolean, default False
-
Use log scaling on x axis
-
logy : boolean, default False
-
Use log scaling on y axis
-
loglog : boolean, default False
-
Use log scaling on both x and y axes
-
xticks : sequence
-
Values to use for the xticks
-
yticks : sequence
-
Values to use for the yticks
-
xlim : 2-tuple/list
-
ylim : 2-tuple/list
-
rot : int, default None
-
Rotation for ticks (xticks for vertical, yticks for horizontal plots)
-
fontsize : int, default None
-
Font size for xticks and yticks
-
colormap : str or matplotlib colormap object, default None
-
Colormap to select colors from. If string, load colormap with that name from matplotlib.
-
colorbar : boolean, optional
-
If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
-
position : float
-
Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
-
table : boolean, Series or DataFrame, default False
-
If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.
-
yerr : DataFrame, Series, array-like, dict and str
-
See Plotting with Error Bars for detail.
-
xerr : same types as yerr.
-
stacked : boolean, default False in line and
-
bar plots, and True in area plot. If True, create stacked plot.
-
sort_columns : boolean, default False
-
Sort column names to determine plot ordering
-
secondary_y : boolean or sequence, default False
-
Whether to plot on the secondary y-axis If a list/tuple, which columns to plot on secondary y-axis
-
mark_right : boolean, default True
-
When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend
-
`**kwds` : keywords
-
Options to pass to matplotlib plotting method
Returns: -
axes : matplotlib.axes.Axes or numpy.ndarray of them
Notes
- See matplotlib documentation online for more on this subject
- If
kind
= ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout byposition
keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) - If
kind
= ‘scatter’ and the argumentc
is the name of a dataframe column, the values of that column are used to color each point. - If
kind
= ‘hexbin’, you can control the size of the bins with thegridsize
argument. By default, a histogram of the counts around each(x, y)
point is computed. You can specify alternative aggregations by passing values to theC
andreduce_C_function
arguments.C
specifies the value at each(x, y)
point andreduce_C_function
is a function of one argument that reduces all the values in a bin to a single number (e.g.mean
,max
,sum
,std
).
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.plot.html