On this page
pandas.DataFrame.rename
DataFrame.rename(mapper=None, index=None, columns=None, axis=None, copy=True, inplace=False, level=None)
[source]-
Alter axes labels.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
See the user guide for more.
Parameters: -
mapper, index, columns : dict-like or function, optional
-
dict-like or functions transformations to apply to that axis’ values. Use either
mapper
andaxis
to specify the axis to target withmapper
, orindex
andcolumns
. -
axis : int or str, optional
-
Axis to target with
mapper
. Can be either the axis name (‘index’, ‘columns’) or number (0, 1). The default is ‘index’. -
copy : boolean, default True
-
Also copy underlying data
-
inplace : boolean, default False
-
Whether to return a new DataFrame. If True then value of copy is ignored.
-
level : int or level name, default None
-
In case of a MultiIndex, only rename labels in the specified level.
Returns: -
renamed : DataFrame
See also
Examples
DataFrame.rename
supports two calling conventions(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={'index', 'columns'}, ...)
We highly recommend using keyword arguments to clarify your intent.
>>> df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df.rename(index=str, columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6
>>> df.rename(index=str, columns={"A": "a", "C": "c"}) a B 0 1 4 1 2 5 2 3 6
Using axis-style parameters
>>> df.rename(str.lower, axis='columns') a b 0 1 4 1 2 5 2 3 6
>>> df.rename({1: 2, 2: 4}, axis='index') A B 0 1 4 2 2 5 4 3 6
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.DataFrame.rename.html