On this page
pandas.HDFStore.append
HDFStore.append(key, value, format=None, append=True, columns=None, dropna=None, **kwargs)
[source]-
Append to Table in file. Node must already exist and be Table format.
Parameters: -
key : object
-
value : {Series, DataFrame, Panel}
-
format : ‘table’ is the default
-
-
table(t) : table format
-
Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data
-
-
append : boolean, default True, append the input data to the
-
existing
-
data_columns : list of columns, or True, default None
-
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.
-
min_itemsize : dict of columns that specify minimum string sizes
-
nan_rep : string to use as string nan represenation
-
chunksize : size to chunk the writing
-
expectedrows : expected TOTAL row size of this table
-
encoding : default None, provide an encoding for strings
-
dropna : boolean, default False, do not write an ALL nan row to
-
the store settable by the option ‘io.hdf.dropna_table’
Notes
Does not check if data being appended overlaps with existing data in the table, so be careful
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.HDFStore.append.html