On this page
pandas.Series.mask
Series.mask(cond, other=nan, inplace=False, axis=None, level=None, errors='raise', try_cast=False, raise_on_error=None)[source]-
Replace values where the condition is True.
Parameters: -
cond : boolean NDFrame, array-like, or callable -
Where
condis False, keep the original value. Where True, replace with corresponding value fromother. Ifcondis callable, it is computed on the NDFrame and should return boolean NDFrame or array. The callable must not change input NDFrame (though pandas doesn’t check it).New in version 0.18.1: A callable can be used as cond.
-
other : scalar, NDFrame, or callable -
Entries where
condis True are replaced with corresponding value fromother. If other is callable, it is computed on the NDFrame and should return scalar or NDFrame. The callable must not change input NDFrame (though pandas doesn’t check it).New in version 0.18.1: A callable can be used as other.
-
inplace : boolean, default False -
Whether to perform the operation in place on the data.
-
axis : int, default None -
Alignment axis if needed.
-
level : int, default None -
Alignment level if needed.
-
errors : str, {‘raise’, ‘ignore’}, default raise -
Note that currently this parameter won’t affect the results and will always coerce to a suitable dtype.
raise: allow exceptions to be raised.ignore: suppress exceptions. On error return original object.
-
try_cast : boolean, default False -
Try to cast the result back to the input type (if possible).
-
raise_on_error : boolean, default True -
Whether to raise on invalid data types (e.g. trying to where on strings).
Deprecated since version 0.21.0: Use
errors.
Returns: -
wh : same type as caller
See also
DataFrame.where()- Return an object of same shape as self.
Notes
The mask method is an application of the if-then idiom. For each element in the calling DataFrame, if
condisFalsethe element is used; otherwise the corresponding element from the DataFrameotheris used.The signature for
DataFrame.where()differs fromnumpy.where(). Roughlydf1.where(m, df2)is equivalent tonp.where(m, df1, df2).For further details and examples see the
maskdocumentation in indexing.Examples
>>> s = pd.Series(range(5)) >>> s.where(s > 0) 0 NaN 1 1.0 2 2.0 3 3.0 4 4.0 dtype: float64>>> s.mask(s > 0) 0 0.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64>>> s.where(s > 1, 10) 0 10 1 10 2 2 3 3 4 4 dtype: int64>>> df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=['A', 'B']) >>> m = df % 3 == 0 >>> df.where(m, -df) A B 0 0 -1 1 -2 3 2 -4 -5 3 6 -7 4 -8 9 >>> df.where(m, -df) == np.where(m, df, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True >>> df.where(m, -df) == df.mask(~m, -df) A B 0 True True 1 True True 2 True True 3 True True 4 True True -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.mask.html