On this page
pandas.Series.max
Series.max(axis=None, skipna=None, level=None, numeric_only=None, **kwargs)[source]-
Return the maximum of the values for the requested axis.
If you want the index of the maximum, useidxmax. This is the equivalent of thenumpy.ndarraymethodargmax.Parameters: -
axis : {index (0)} -
Axis for the function to be applied on.
-
skipna : bool, default True -
Exclude NA/null values when computing the result.
-
level : int or level name, default None -
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
-
numeric_only : bool, default None -
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
-
Additional keyword arguments to be passed to the function.
Returns: -
max : scalar or Series (if level specified)
See also
Series.sum- Return the sum.
Series.min- Return the minimum.
Series.max- Return the maximum.
Series.idxmin- Return the index of the minimum.
Series.idxmax- Return the index of the maximum.
DataFrame.min- Return the sum over the requested axis.
DataFrame.min- Return the minimum over the requested axis.
DataFrame.max- Return the maximum over the requested axis.
DataFrame.idxmin- Return the index of the minimum over the requested axis.
DataFrame.idxmax- Return the index of the maximum over the requested axis.
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64>>> s.max() 8Max using level names, as well as indices.
>>> s.max(level='blooded') blooded warm 4 cold 8 Name: legs, dtype: int64>>> s.max(level=0) blooded warm 4 cold 8 Name: legs, dtype: int64 -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.max.html