On this page
pandas.Series.plot
Series.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)[source]-
Make plots of Series using matplotlib / pylab.
New in version 0.17.0: Each plot kind has a corresponding method on the
Series.plotaccessor:s.plot(kind='line')is equivalent tos.plot.line().Parameters: -
data : Series -
kind : str -
- ‘line’ : line plot (default)
- ‘bar’ : vertical bar plot
- ‘barh’ : horizontal bar plot
- ‘hist’ : histogram
- ‘box’ : boxplot
- ‘kde’ : Kernel Density Estimation plot
- ‘density’ : same as ‘kde’
- ‘area’ : area plot
- ‘pie’ : pie plot
-
ax : matplotlib axes object -
If not passed, uses gca()
-
figsize : a tuple (width, height) in inches -
use_index : boolean, default True -
Use index as ticks for x axis
-
title : string or list -
Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and
subplotsis True, print each item in the list above the corresponding subplot. -
grid : boolean, default None (matlab style default) -
Axis grid lines
-
legend : False/True/’reverse’ -
Place legend on axis subplots
-
style : list or dict -
matplotlib line style per column
-
logx : boolean, default False -
Use log scaling on x axis
-
logy : boolean, default False -
Use log scaling on y axis
-
loglog : boolean, default False -
Use log scaling on both x and y axes
-
xticks : sequence -
Values to use for the xticks
-
yticks : sequence -
Values to use for the yticks
-
xlim : 2-tuple/list -
ylim : 2-tuple/list -
rot : int, default None -
Rotation for ticks (xticks for vertical, yticks for horizontal plots)
-
fontsize : int, default None -
Font size for xticks and yticks
-
colormap : str or matplotlib colormap object, default None -
Colormap to select colors from. If string, load colormap with that name from matplotlib.
-
colorbar : boolean, optional -
If True, plot colorbar (only relevant for ‘scatter’ and ‘hexbin’ plots)
-
position : float -
Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
-
table : boolean, Series or DataFrame, default False -
If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib’s default layout. If a Series or DataFrame is passed, use passed data to draw a table.
-
yerr : DataFrame, Series, array-like, dict and str -
See Plotting with Error Bars for detail.
-
xerr : same types as yerr. -
label : label argument to provide to plot -
secondary_y : boolean or sequence of ints, default False -
If True then y-axis will be on the right
-
mark_right : boolean, default True -
When using a secondary_y axis, automatically mark the column labels with “(right)” in the legend
-
`**kwds` : keywords -
Options to pass to matplotlib plotting method
Returns: -
axes : matplotlib.axes.Axes or numpy.ndarray of them
Notes
- See matplotlib documentation online for more on this subject
- If
kind= ‘bar’ or ‘barh’, you can specify relative alignments for bar plot layout bypositionkeyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center)
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.Series.plot.html