On this page
pandas.SparseArray.map
SparseArray.map(mapper)
[source]-
Map categories using input correspondence (dict, Series, or function).
Parameters: -
mapper : dict, Series, callable
-
The correspondence from old values to new.
Returns: - SparseArray
-
The output array will have the same density as the input. The output fill value will be the result of applying the mapping to
self.fill_value
Examples
>>> arr = pd.SparseArray([0, 1, 2]) >>> arr.apply(lambda x: x + 10) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32)
>>> arr.apply({0: 10, 1: 11, 2: 12}) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32)
>>> arr.apply(pd.Series([10, 11, 12], index=[0, 1, 2])) [10, 11, 12] Fill: 10 IntIndex Indices: array([1, 2], dtype=int32)
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.24.2/reference/api/pandas.SparseArray.map.html