On this page
pandas.DataFrame.plot.hexbin
DataFrame.plot.hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None, **kwargs)[source]-
Generate a hexagonal binning plot.
Generate a hexagonal binning plot of
xversusy. IfCisNone(the default), this is a histogram of the number of occurrences of the observations at(x[i], y[i]).If
Cis specified, specifies values at given coordinates(x[i], y[i]). These values are accumulated for each hexagonal bin and then reduced according toreduce_C_function, having as default the NumPy’s mean function (numpy.mean()). (IfCis specified, it must also be a 1-D sequence of the same length asxandy, or a column label.)Parameters: -
x : int or str -
The column label or position for x points.
-
y : int or str -
The column label or position for y points.
-
C : int or str, optional -
The column label or position for the value of
(x, y)point. -
reduce_C_function : callable, default np.mean -
Function of one argument that reduces all the values in a bin to a single number (e.g.
np.mean,np.max,np.sum,np.std). -
gridsize : int or tuple of (int, int), default 100 -
The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen in a way that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction.
- **kwds
-
Additional keyword arguments are documented in
DataFrame.plot().
Returns: - matplotlib.AxesSubplot
-
The matplotlib
Axeson which the hexbin is plotted.
See also
DataFrame.plot- Make plots of a DataFrame.
matplotlib.pyplot.hexbin- Hexagonal binning plot using matplotlib, the matplotlib function that is used under the hood.
Examples
The following examples are generated with random data from a normal distribution.
>>> n = 10000 >>> df = pd.DataFrame({'x': np.random.randn(n), ... 'y': np.random.randn(n)}) >>> ax = df.plot.hexbin(x='x', y='y', gridsize=20)The next example uses
Candnp.sumasreduce_C_function. Note that‘observations’values ranges from 1 to 5 but the result plot shows values up to more than 25. This is because of thereduce_C_function.>>> n = 500 >>> df = pd.DataFrame({ ... 'coord_x': np.random.uniform(-3, 3, size=n), ... 'coord_y': np.random.uniform(30, 50, size=n), ... 'observations': np.random.randint(1,5, size=n) ... }) >>> ax = df.plot.hexbin(x='coord_x', ... y='coord_y', ... C='observations', ... reduce_C_function=np.sum, ... gridsize=10, ... cmap="viridis") -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.DataFrame.plot.hexbin.html