On this page
pandas.Grouper
class pandas.Grouper(key=None, level=None, freq=None, axis=0, sort=False)
[source]-
A Grouper allows the user to specify a groupby instruction for a target object
This specification will select a column via the key parameter, or if the level and/or axis parameters are given, a level of the index of the target object.
If
axis
and/orlevel
are passed as keywords to bothGrouper
andgroupby
, the values passed toGrouper
take precedence.Parameters: -
key : string, defaults to None
-
groupby key, which selects the grouping column of the target
-
level : name/number, defaults to None
-
the level for the target index
-
freq : string / frequency object, defaults to None
-
This will groupby the specified frequency if the target selection (via key or level) is a datetime-like object. For full specification of available frequencies, please see here.
-
axis : number/name of the axis, defaults to 0
-
sort : boolean, default to False
-
whether to sort the resulting labels
-
closed : {‘left’ or ‘right’}
-
Closed end of interval. Only when
freq
parameter is passed. -
label : {‘left’ or ‘right’}
-
Interval boundary to use for labeling. Only when
freq
parameter is passed. -
convention : {‘start’, ‘end’, ‘e’, ‘s’}
-
If grouper is PeriodIndex and
freq
parameter is passed. -
base : int, default 0
-
Only when
freq
parameter is passed. -
loffset : string, DateOffset, timedelta object
-
Only when
freq
parameter is passed.
Returns: - A specification for a groupby instruction
Examples
Syntactic sugar for
df.groupby('A')
>>> df.groupby(Grouper(key='A'))
Specify a resample operation on the column ‘date’
>>> df.groupby(Grouper(key='date', freq='60s'))
Specify a resample operation on the level ‘date’ on the columns axis with a frequency of 60s
>>> df.groupby(Grouper(level='date', freq='60s', axis=1))
Attributes
ax groups -
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Grouper.html