On this page
pandas.Series.dropna
Series.dropna(self, axis=0, inplace=False, **kwargs)
[source]-
Return a new Series with missing values removed.
See the User Guide for more on which values are considered missing, and how to work with missing data.
Parameters: -
axis : {0 or ‘index’}, default 0
-
There is only one axis to drop values from.
-
inplace : bool, default False
-
If True, do operation inplace and return None.
- **kwargs
-
Not in use.
Returns: - Series
-
Series with NA entries dropped from it.
See also
Series.isna
- Indicate missing values.
Series.notna
- Indicate existing (non-missing) values.
Series.fillna
- Replace missing values.
DataFrame.dropna
- Drop rows or columns which contain NA values.
Index.dropna
- Drop missing indices.
Examples
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64
Drop NA values from a Series.
>>> ser.dropna() 0 1.0 1 2.0 dtype: float64
Keep the Series with valid entries in the same variable.
>>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64
Empty strings are not considered NA values.
None
is considered an NA value.>>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object
-
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.Series.dropna.html