On this page
pandas.core.resample.Resampler.first
- Resampler.first(numeric_only=_NoDefault.no_default, min_count=0, *args, **kwargs)[source]
-
Compute the first non-null entry of each column.
- Parameters
-
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
- min_count:int, default -1
-
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA.
- Returns
-
- Series or DataFrame
-
First non-null of values within each group.
See also
-
DataFrame.groupby
-
Apply a function groupby to each row or column of a DataFrame.
-
DataFrame.core.groupby.GroupBy.last
-
Compute the last non-null entry of each column.
-
DataFrame.core.groupby.GroupBy.nth
-
Take the nth row from each group.
Examples
>>> df = pd.DataFrame(dict(A=[1, 1, 3], B=[None, 5, 6], C=[1, 2, 3], ... D=['3/11/2000', '3/12/2000', '3/13/2000'])) >>> df['D'] = pd.to_datetime(df['D']) >>> df.groupby("A").first() B C D A 1 5.0 1 2000-03-11 3 6.0 3 2000-03-13 >>> df.groupby("A").first(min_count=2) B C D A 1 NaN 1.0 2000-03-11 3 NaN NaN NaT >>> df.groupby("A").first(numeric_only=True) B C A 1 5.0 1 3 6.0 3
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.resample.Resampler.first.html