On this page
pandas.core.window.ewm.ExponentialMovingWindow.cov
- ExponentialMovingWindow.cov(other=None, pairwise=None, bias=False, numeric_only=False, **kwargs)[source]
-
Calculate the ewm (exponential weighted moment) sample covariance.
- Parameters
-
- other:Series or DataFrame , optional
-
If not supplied then will default to self and produce pairwise output.
- pairwise:bool, default None
-
If False then only matching columns between self and other will be used and the output will be a DataFrame. If True then all pairwise combinations will be calculated and the output will be a MultiIndex DataFrame in the case of DataFrame inputs. In the case of missing elements, only complete pairwise observations will be used.
- bias:bool, default False
-
Use a standard estimation bias correction.
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
New in version 1.5.0.
- **kwargs
-
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- Returns
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64
dtype.
See also
-
pandas.Series.ewm
-
Calling ewm with Series data.
-
pandas.DataFrame.ewm
-
Calling ewm with DataFrames.
-
pandas.Series.cov
-
Aggregating cov for Series.
-
pandas.DataFrame.cov
-
Aggregating cov for DataFrame.
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.window.ewm.ExponentialMovingWindow.cov.html