On this page
pandas.core.window.rolling.Rolling.kurt
- Rolling.kurt(numeric_only=False, **kwargs)[source]
-
Calculate the rolling Fisher’s definition of kurtosis without bias.
- Parameters
-
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
New in version 1.5.0.
- **kwargs
-
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- Returns
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64
dtype.
See also
-
scipy.stats.kurtosis
-
Reference SciPy method.
-
pandas.Series.rolling
-
Calling rolling with Series data.
-
pandas.DataFrame.rolling
-
Calling rolling with DataFrames.
-
pandas.Series.kurt
-
Aggregating kurt for Series.
-
pandas.DataFrame.kurt
-
Aggregating kurt for DataFrame.
Notes
A minimum of four periods is required for the calculation.
Examples
The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats.
>>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.window.rolling.Rolling.kurt.html