On this page
pandas.core.window.rolling.Rolling.kurt
- Rolling.kurt(numeric_only=False, **kwargs)[source]
- 
    Calculate the rolling Fisher’s definition of kurtosis without bias. - Parameters
- 
      - numeric_only:bool, default False
- 
        Include only float, int, boolean columns. New in version 1.5.0. 
- **kwargs
- 
        For NumPy compatibility and will not have an effect on the result. Deprecated since version 1.5.0. 
 
- Returns
- 
      - Series or DataFrame
- 
        Return type is the same as the original object with np.float64dtype.
 
 See also - 
       scipy.stats.kurtosis
- 
       Reference SciPy method. 
- 
       pandas.Series.rolling
- 
       Calling rolling with Series data. 
- 
       pandas.DataFrame.rolling
- 
       Calling rolling with DataFrames. 
- 
       pandas.Series.kurt
- 
       Aggregating kurt for Series. 
- 
       pandas.DataFrame.kurt
- 
       Aggregating kurt for DataFrame. 
 Notes A minimum of four periods is required for the calculation. Examples The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats. >>> arr = [1, 2, 3, 4, 999] >>> import scipy.stats >>> print(f"{scipy.stats.kurtosis(arr[:-1], bias=False):.6f}") -1.200000 >>> print(f"{scipy.stats.kurtosis(arr[1:], bias=False):.6f}") 3.999946 >>> s = pd.Series(arr) >>> s.rolling(4).kurt() 0 NaN 1 NaN 2 NaN 3 -1.200000 4 3.999946 dtype: float64
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
 https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.window.rolling.Rolling.kurt.html