On this page
pandas.core.window.rolling.Rolling.mean
- Rolling.mean(numeric_only=False, *args, engine=None, engine_kwargs=None, **kwargs)[source]
-
Calculate the rolling mean.
- Parameters
-
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
New in version 1.5.0.
- *args
-
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- engine:str, default None
-
'cython': Runs the operation through C-extensions from cython.'numba': Runs the operation through JIT compiled code from numba.None: Defaults to'cython'or globally settingcompute.use_numbaNew in version 1.3.0.
- engine_kwargs:dict, default None
-
For
'cython'engine, there are no acceptedengine_kwargsFor
'numba'engine, the engine can acceptnopython,nogilandparalleldictionary keys. The values must either beTrueorFalse. The defaultengine_kwargsfor the'numba'engine is{'nopython': True, 'nogil': False, 'parallel': False}New in version 1.3.0.
- **kwargs
-
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- Returns
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64dtype.
See also
-
pandas.Series.rolling -
Calling rolling with Series data.
-
pandas.DataFrame.rolling -
Calling rolling with DataFrames.
-
pandas.Series.mean -
Aggregating mean for Series.
-
pandas.DataFrame.mean -
Aggregating mean for DataFrame.
Notes
See Numba engine and Numba (JIT compilation) for extended documentation and performance considerations for the Numba engine.
Examples
The below examples will show rolling mean calculations with window sizes of two and three, respectively.
>>> s = pd.Series([1, 2, 3, 4]) >>> s.rolling(2).mean() 0 NaN 1 1.5 2 2.5 3 3.5 dtype: float64>>> s.rolling(3).mean() 0 NaN 1 NaN 2 2.0 3 3.0 dtype: float64
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.window.rolling.Rolling.mean.html