On this page
pandas.core.window.rolling.Rolling.rank
- Rolling.rank(method='average', ascending=True, pct=False, numeric_only=False, **kwargs)[source]
-
Calculate the rolling rank.
New in version 1.4.0.
- Parameters
-
- method:{‘average’, ‘min’, ‘max’}, default ‘average’
-
How to rank the group of records that have the same value (i.e. ties):
average: average rank of the group
min: lowest rank in the group
max: highest rank in the group
- ascending:bool, default True
-
Whether or not the elements should be ranked in ascending order.
- pct:bool, default False
-
Whether or not to display the returned rankings in percentile form.
- numeric_only:bool, default False
-
Include only float, int, boolean columns.
New in version 1.5.0.
- **kwargs
-
For NumPy compatibility and will not have an effect on the result.
Deprecated since version 1.5.0.
- Returns
-
- Series or DataFrame
-
Return type is the same as the original object with
np.float64
dtype.
See also
-
pandas.Series.rolling
-
Calling rolling with Series data.
-
pandas.DataFrame.rolling
-
Calling rolling with DataFrames.
-
pandas.Series.rank
-
Aggregating rank for Series.
-
pandas.DataFrame.rank
-
Aggregating rank for DataFrame.
Examples
>>> s = pd.Series([1, 4, 2, 3, 5, 3]) >>> s.rolling(3).rank() 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 1.5 dtype: float64
>>> s.rolling(3).rank(method="max") 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 2.0 dtype: float64
>>> s.rolling(3).rank(method="min") 0 NaN 1 NaN 2 2.0 3 2.0 4 3.0 5 1.0 dtype: float64
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.core.window.rolling.Rolling.rank.html