On this page
pandas.DataFrame.diff
- DataFrame.diff(periods=1, axis=0)[source]
-
First discrete difference of element.
Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is element in previous row).
- Parameters
-
- periods:int, default 1
-
Periods to shift for calculating difference, accepts negative values.
- axis:{0 or ‘index’, 1 or ‘columns’}, default 0
-
Take difference over rows (0) or columns (1).
- Returns
-
- DataFrame
-
First differences of the Series.
See also
-
DataFrame.pct_change
-
Percent change over given number of periods.
-
DataFrame.shift
-
Shift index by desired number of periods with an optional time freq.
-
Series.diff
-
First discrete difference of object.
Notes
For boolean dtypes, this uses
operator.xor()
rather thanoperator.sub()
. The result is calculated according to current dtype in DataFrame, however dtype of the result is always float64.Examples
Difference with previous row
>>> df = pd.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> df a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36
>>> df.diff() a b c 0 NaN NaN NaN 1 1.0 0.0 3.0 2 1.0 1.0 5.0 3 1.0 1.0 7.0 4 1.0 2.0 9.0 5 1.0 3.0 11.0
Difference with previous column
>>> df.diff(axis=1) a b c 0 NaN 0 0 1 NaN -1 3 2 NaN -1 7 3 NaN -1 13 4 NaN 0 20 5 NaN 2 28
Difference with 3rd previous row
>>> df.diff(periods=3) a b c 0 NaN NaN NaN 1 NaN NaN NaN 2 NaN NaN NaN 3 3.0 2.0 15.0 4 3.0 4.0 21.0 5 3.0 6.0 27.0
Difference with following row
>>> df.diff(periods=-1) a b c 0 -1.0 0.0 -3.0 1 -1.0 -1.0 -5.0 2 -1.0 -1.0 -7.0 3 -1.0 -2.0 -9.0 4 -1.0 -3.0 -11.0 5 NaN NaN NaN
Overflow in input dtype
>>> df = pd.DataFrame({'a': [1, 0]}, dtype=np.uint8) >>> df.diff() a 0 NaN 1 255.0
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.DataFrame.diff.html