On this page
pandas.DataFrame.var
- DataFrame.var(axis=None, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)[source]
-
Return unbiased variance over requested axis.
Normalized by N-1 by default. This can be changed using the ddof argument.
- Parameters
-
- axis:{index (0), columns (1)}
-
For Series this parameter is unused and defaults to 0.
- skipna:bool, default True
-
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- level:int or level name, default None
-
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.
- ddof:int, default 1
-
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
- numeric_only:bool, default None
-
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Deprecated since version 1.5.0: Specifying
numeric_only=None
is deprecated. The default value will beFalse
in a future version of pandas.
- Returns
-
- Series or DataFrame (if level specified)
Examples
>>> df = pd.DataFrame({'person_id': [0, 1, 2, 3], ... 'age': [21, 25, 62, 43], ... 'height': [1.61, 1.87, 1.49, 2.01]} ... ).set_index('person_id') >>> df age height person_id 0 21 1.61 1 25 1.87 2 62 1.49 3 43 2.01
>>> df.var() age 352.916667 height 0.056367
Alternatively,
ddof=0
can be set to normalize by N instead of N-1:>>> df.var(ddof=0) age 264.687500 height 0.042275
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.DataFrame.var.html