On this page
pandas.HDFStore.append
- HDFStore.append(key, value, format=None, axes=None, index=True, append=True, complib=None, complevel=None, columns=None, min_itemsize=None, nan_rep=None, chunksize=None, expectedrows=None, dropna=None, data_columns=None, encoding=None, errors='strict')[source]
-
Append to Table in file.
Node must already exist and be Table format.
- Parameters
-
- key:str
- value:{Series, DataFrame}
- format:‘table’ is the default
-
Format to use when storing object in HDFStore. Value can be one of:
-
'table'
-
Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.
-
- index:bool, default True
-
Write DataFrame index as a column.
- append:bool, default True
-
Append the input data to the existing.
- data_columns:list of columns, or True, default None
-
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See here.
- min_itemsize:dict of columns that specify minimum str sizes
- nan_rep:str to use as str nan representation
- chunksize:size to chunk the writing
- expectedrows:expected TOTAL row size of this table
- encoding:default None, provide an encoding for str
- dropna:bool, default False, optional
-
Do not write an ALL nan row to the store settable by the option ‘io.hdf.dropna_table’.
Notes
Does not check if data being appended overlaps with existing data in the table, so be careful
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.HDFStore.append.html