On this page
pandas.HDFStore.put
- HDFStore.put(key, value, format=None, index=True, append=False, complib=None, complevel=None, min_itemsize=None, nan_rep=None, data_columns=None, encoding=None, errors='strict', track_times=True, dropna=False)[source]
-
Store object in HDFStore.
- Parameters
-
- key:str
- value:{Series, DataFrame}
- format:‘fixed(f)|table(t)’, default is ‘fixed’
-
Format to use when storing object in HDFStore. Value can be one of:
-
'fixed'
-
Fixed format. Fast writing/reading. Not-appendable, nor searchable.
-
'table'
-
Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.
-
- index:bool, default True
-
Write DataFrame index as a column.
- append:bool, default False
-
This will force Table format, append the input data to the existing.
- data_columns:list of columns or True, default None
-
List of columns to create as data columns, or True to use all columns. See here.
- encoding:str, default None
-
Provide an encoding for strings.
- track_times:bool, default True
-
Parameter is propagated to ‘create_table’ method of ‘PyTables’. If set to False it enables to have the same h5 files (same hashes) independent on creation time.
- dropna:bool, default False, optional
-
Remove missing values.
New in version 1.1.0.
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.HDFStore.put.html