On this page
pandas.Series.dropna
- Series.dropna(axis=0, inplace=False, how=None)[source]
-
Return a new Series with missing values removed.
See the User Guide for more on which values are considered missing, and how to work with missing data.
- Parameters
-
- axis:{0 or ‘index’}
-
Unused. Parameter needed for compatibility with DataFrame.
- inplace:bool, default False
-
If True, do operation inplace and return None.
- how:str, optional
-
Not in use. Kept for compatibility.
- Returns
-
- Series or None
-
Series with NA entries dropped from it or None if
inplace=True
.
See also
-
Series.isna
-
Indicate missing values.
-
Series.notna
-
Indicate existing (non-missing) values.
-
Series.fillna
-
Replace missing values.
-
DataFrame.dropna
-
Drop rows or columns which contain NA values.
-
Index.dropna
-
Drop missing indices.
Examples
>>> ser = pd.Series([1., 2., np.nan]) >>> ser 0 1.0 1 2.0 2 NaN dtype: float64
Drop NA values from a Series.
>>> ser.dropna() 0 1.0 1 2.0 dtype: float64
Keep the Series with valid entries in the same variable.
>>> ser.dropna(inplace=True) >>> ser 0 1.0 1 2.0 dtype: float64
Empty strings are not considered NA values.
None
is considered an NA value.>>> ser = pd.Series([np.NaN, 2, pd.NaT, '', None, 'I stay']) >>> ser 0 NaN 1 2 2 NaT 3 4 None 5 I stay dtype: object >>> ser.dropna() 1 2 3 5 I stay dtype: object
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.Series.dropna.html