On this page
pandas.Series.dt
- Series.dt()[source]
-
Accessor object for datetimelike properties of the Series values.
Examples
>>> seconds_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="s")) >>> seconds_series 0 2000-01-01 00:00:00 1 2000-01-01 00:00:01 2 2000-01-01 00:00:02 dtype: datetime64[ns] >>> seconds_series.dt.second 0 0 1 1 2 2 dtype: int64
>>> hours_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="h")) >>> hours_series 0 2000-01-01 00:00:00 1 2000-01-01 01:00:00 2 2000-01-01 02:00:00 dtype: datetime64[ns] >>> hours_series.dt.hour 0 0 1 1 2 2 dtype: int64
>>> quarters_series = pd.Series(pd.date_range("2000-01-01", periods=3, freq="q")) >>> quarters_series 0 2000-03-31 1 2000-06-30 2 2000-09-30 dtype: datetime64[ns] >>> quarters_series.dt.quarter 0 1 1 2 2 3 dtype: int64
Returns a Series indexed like the original Series. Raises TypeError if the Series does not contain datetimelike values.
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.Series.dt.html