On this page
pandas.Series.expanding
- Series.expanding(min_periods=1, center=None, axis=0, method='single')[source]
-
Provide expanding window calculations.
- Parameters
-
- min_periods:int, default 1
-
Minimum number of observations in window required to have a value; otherwise, result is
np.nan
. - center:bool, default False
-
If False, set the window labels as the right edge of the window index.
If True, set the window labels as the center of the window index.
Deprecated since version 1.1.0.
- axis:int or str, default 0
-
If
0
or'index'
, roll across the rows.If
1
or'columns'
, roll across the columns.For Series this parameter is unused and defaults to 0.
- method:str {‘single’, ‘table’}, default ‘single’
-
Execute the rolling operation per single column or row (
'single'
) or over the entire object ('table'
).This argument is only implemented when specifying
engine='numba'
in the method call.New in version 1.3.0.
- Returns
-
Expanding
subclass
Notes
See Windowing Operations for further usage details and examples.
Examples
>>> df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) >>> df B 0 0.0 1 1.0 2 2.0 3 NaN 4 4.0
min_periods
Expanding sum with 1 vs 3 observations needed to calculate a value.
>>> df.expanding(1).sum() B 0 0.0 1 1.0 2 3.0 3 3.0 4 7.0 >>> df.expanding(3).sum() B 0 NaN 1 NaN 2 3.0 3 3.0 4 7.0
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.Series.expanding.html