On this page
pandas.Series.sum
- Series.sum(axis=None, skipna=True, level=None, numeric_only=None, min_count=0, **kwargs)[source]
-
Return the sum of the values over the requested axis.
This is equivalent to the method
numpy.sum
.- Parameters
-
- axis:{index (0)}
-
Axis for the function to be applied on. For Series this parameter is unused and defaults to 0.
- skipna:bool, default True
-
Exclude NA/null values when computing the result.
- level:int or level name, default None
-
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a scalar.
Deprecated since version 1.3.0: The level keyword is deprecated. Use groupby instead.
- numeric_only:bool, default None
-
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
Deprecated since version 1.5.0: Specifying
numeric_only=None
is deprecated. The default value will beFalse
in a future version of pandas. - min_count:int, default 0
-
The required number of valid values to perform the operation. If fewer than
min_count
non-NA values are present the result will be NA. - **kwargs
-
Additional keyword arguments to be passed to the function.
- Returns
-
- scalar or Series (if level specified)
See also
-
Series.sum
-
Return the sum.
-
Series.min
-
Return the minimum.
-
Series.max
-
Return the maximum.
-
Series.idxmin
-
Return the index of the minimum.
-
Series.idxmax
-
Return the index of the maximum.
-
DataFrame.sum
-
Return the sum over the requested axis.
-
DataFrame.min
-
Return the minimum over the requested axis.
-
DataFrame.max
-
Return the maximum over the requested axis.
-
DataFrame.idxmin
-
Return the index of the minimum over the requested axis.
-
DataFrame.idxmax
-
Return the index of the maximum over the requested axis.
Examples
>>> idx = pd.MultiIndex.from_arrays([ ... ['warm', 'warm', 'cold', 'cold'], ... ['dog', 'falcon', 'fish', 'spider']], ... names=['blooded', 'animal']) >>> s = pd.Series([4, 2, 0, 8], name='legs', index=idx) >>> s blooded animal warm dog 4 falcon 2 cold fish 0 spider 8 Name: legs, dtype: int64
>>> s.sum() 14
By default, the sum of an empty or all-NA Series is
0
.>>> pd.Series([], dtype="float64").sum() # min_count=0 is the default 0.0
This can be controlled with the
min_count
parameter. For example, if you’d like the sum of an empty series to be NaN, passmin_count=1
.>>> pd.Series([], dtype="float64").sum(min_count=1) nan
Thanks to the
skipna
parameter,min_count
handles all-NA and empty series identically.>>> pd.Series([np.nan]).sum() 0.0
>>> pd.Series([np.nan]).sum(min_count=1) nan
© 2008–2022, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
https://pandas.pydata.org/pandas-docs/version/1.5.0/reference/api/pandas.Series.sum.html