pytorch / 1.8.0 / generated / torch.nn.avgpool2d.html /

AvgPool2d

class torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) [source]

Applies a 2D average pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ( N , C , H , W ) (N, C, H, W) , output ( N , C , H o u t , W o u t ) (N, C, H_{out}, W_{out}) and kernel_size ( k H , k W ) (kH, kW) can be precisely described as:

o u t ( N i , C j , h , w ) = 1 k H k W m = 0 k H 1 n = 0 k W 1 i n p u t ( N i , C j , s t r i d e [ 0 ] × h + m , s t r i d e [ 1 ] × w + n ) out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

The parameters kernel_size, stride, padding can either be:

  • a single int – in which case the same value is used for the height and width dimension
  • a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
Parameters
  • kernel_size – the size of the window
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides
  • ceil_mode – when True, will use ceil instead of floor to compute the output shape
  • count_include_pad – when True, will include the zero-padding in the averaging calculation
  • divisor_override – if specified, it will be used as divisor, otherwise kernel_size will be used
Shape:
  • Input: ( N , C , H i n , W i n ) (N, C, H_{in}, W_{in})
  • Output: ( N , C , H o u t , W o u t ) (N, C, H_{out}, W_{out}) , where

    H o u t = H i n + 2 × padding [ 0 ] kernel_size [ 0 ] stride [ 0 ] + 1 H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{kernel\_size}[0]}{\text{stride}[0]} + 1\right\rfloor
    W o u t = W i n + 2 × padding [ 1 ] kernel_size [ 1 ] stride [ 1 ] + 1 W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{kernel\_size}[1]}{\text{stride}[1]} + 1\right\rfloor

Examples:

>>> # pool of square window of size=3, stride=2
>>> m = nn.AvgPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.AvgPool2d((3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.AvgPool2d.html