pytorch / 1.8.0 / generated / torch.nn.maxpool2d.html /

MaxPool2d

class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False) [source]

Applies a 2D max pooling over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size ( N , C , H , W ) (N, C, H, W) , output ( N , C , H o u t , W o u t ) (N, C, H_{out}, W_{out}) and kernel_size ( k H , k W ) (kH, kW) can be precisely described as:

o u t ( N i , C j , h , w ) = max m = 0 , , k H 1 max n = 0 , , k W 1 input ( N i , C j , stride[0] × h + m , stride[1] × w + n ) \begin{aligned} out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} \\ & \text{input}(N_i, C_j, \text{stride[0]} \times h + m, \text{stride[1]} \times w + n) \end{aligned}

If padding is non-zero, then the input is implicitly zero-padded on both sides for padding number of points. dilation controls the spacing between the kernel points. It is harder to describe, but this link has a nice visualization of what dilation does.

Note

When ceil_mode=True, sliding windows are allowed to go off-bounds if they start within the left padding or the input. Sliding windows that would start in the right padded region are ignored.

The parameters kernel_size, stride, padding, dilation can either be:

  • a single int – in which case the same value is used for the height and width dimension
  • a tuple of two ints – in which case, the first int is used for the height dimension, and the second int for the width dimension
Parameters
  • kernel_size – the size of the window to take a max over
  • stride – the stride of the window. Default value is kernel_size
  • padding – implicit zero padding to be added on both sides
  • dilation – a parameter that controls the stride of elements in the window
  • return_indices – if True, will return the max indices along with the outputs. Useful for torch.nn.MaxUnpool2d later
  • ceil_mode – when True, will use ceil instead of floor to compute the output shape
Shape:
  • Input: ( N , C , H i n , W i n ) (N, C, H_{in}, W_{in})
  • Output: ( N , C , H o u t , W o u t ) (N, C, H_{out}, W_{out}) , where

    H o u t = H i n + 2 padding[0] dilation[0] × ( kernel_size[0] 1 ) 1 stride[0] + 1 H_{out} = \left\lfloor\frac{H_{in} + 2 * \text{padding[0]} - \text{dilation[0]} \times (\text{kernel\_size[0]} - 1) - 1}{\text{stride[0]}} + 1\right\rfloor
    W o u t = W i n + 2 padding[1] dilation[1] × ( kernel_size[1] 1 ) 1 stride[1] + 1 W_{out} = \left\lfloor\frac{W_{in} + 2 * \text{padding[1]} - \text{dilation[1]} \times (\text{kernel\_size[1]} - 1) - 1}{\text{stride[1]}} + 1\right\rfloor

Examples:

>>> # pool of square window of size=3, stride=2
>>> m = nn.MaxPool2d(3, stride=2)
>>> # pool of non-square window
>>> m = nn.MaxPool2d((3, 2), stride=(2, 1))
>>> input = torch.randn(20, 16, 50, 32)
>>> output = m(input)

© 2019 Torch Contributors
Licensed under the 3-clause BSD License.
https://pytorch.org/docs/1.8.0/generated/torch.nn.MaxPool2d.html