pytorch / 1 / generated / torch.optim.nadam.html

NAdam

class torch.optim.NAdam(params, lr=0.002, betas=(0.9, 0.999), eps=1e-08, weight_decay=0, momentum_decay=0.004, foreach=None) [source]

Implements NAdam algorithm.

input : γ t (lr) , β 1 , β 2 (betas) , θ 0 (params) , f ( θ ) (objective) λ (weight decay) , ψ (momentum decay) initialize : m 0 0 ( first moment) , v 0 0 ( second moment) for t = 1 to do g t θ f t ( θ t 1 ) i f λ 0 g t g t + λ θ t 1 μ t β 1 ( 1 1 2 0.9 6 t ψ ) μ t + 1 β 1 ( 1 1 2 0.9 6 ( t + 1 ) ψ ) m t β 1 m t 1 + ( 1 β 1 ) g t v t β 2 v t 1 + ( 1 β 2 ) g t 2 m t ^ μ t + 1 m t / ( 1 i = 1 t + 1 μ i ) + ( 1 μ t ) g t / ( 1 i = 1 t μ i ) v t ^ v t / ( 1 β 2 t ) θ t θ t 1 γ m t ^ / ( v t ^ + ϵ ) r e t u r n θ t \begin{aligned} &\rule{110mm}{0.4pt} \\ &\textbf{input} : \gamma_t \text{ (lr)}, \: \beta_1,\beta_2 \text{ (betas)}, \: \theta_0 \text{ (params)}, \: f(\theta) \text{ (objective)} \\ &\hspace{13mm} \: \lambda \text{ (weight decay)}, \:\psi \text{ (momentum decay)} \\ &\textbf{initialize} : m_0 \leftarrow 0 \text{ ( first moment)}, v_0 \leftarrow 0 \text{ ( second moment)} \\[-1.ex] &\rule{110mm}{0.4pt} \\ &\textbf{for} \: t=1 \: \textbf{to} \: \ldots \: \textbf{do} \\ &\hspace{5mm}g_t \leftarrow \nabla_{\theta} f_t (\theta_{t-1}) \\ &\hspace{5mm}if \: \lambda \neq 0 \\ &\hspace{10mm} g_t \leftarrow g_t + \lambda \theta_{t-1} \\ &\hspace{5mm} \mu_t \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{t \psi} \big) \\ &\hspace{5mm} \mu_{t+1} \leftarrow \beta_1 \big(1 - \frac{1}{2} 0.96^{(t+1)\psi}\big)\\ &\hspace{5mm}m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ &\hspace{5mm}v_t \leftarrow \beta_2 v_{t-1} + (1-\beta_2) g^2_t \\ &\hspace{5mm}\widehat{m_t} \leftarrow \mu_{t+1} m_t/(1-\prod_{i=1}^{t+1}\mu_i)\\[-1.ex] & \hspace{11mm} + (1-\mu_t) g_t /(1-\prod_{i=1}^{t} \mu_{i}) \\ &\hspace{5mm}\widehat{v_t} \leftarrow v_t/\big(1-\beta_2^t \big) \\ &\hspace{5mm}\theta_t \leftarrow \theta_{t-1} - \gamma \widehat{m_t}/ \big(\sqrt{\widehat{v_t}} + \epsilon \big) \\ &\rule{110mm}{0.4pt} \\[-1.ex] &\bf{return} \: \theta_t \\[-1.ex] &\rule{110mm}{0.4pt} \\[-1.ex] \end{aligned}

For further details regarding the algorithm we refer to Incorporating Nesterov Momentum into Adam.

Parameters:
  • params (iterable) – iterable of parameters to optimize or dicts defining parameter groups
  • lr (float, optional) – learning rate (default: 2e-3)
  • betas (Tuple[float, float], optional) – coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999))
  • eps (float, optional) – term added to the denominator to improve numerical stability (default: 1e-8)
  • weight_decay (float, optional) – weight decay (L2 penalty) (default: 0)
  • momentum_decay (float, optional) – momentum momentum_decay (default: 4e-3)
  • foreach (bool, optional) – whether foreach implementation of optimizer is used (default: None)
add_param_group(param_group)

Add a param group to the Optimizer s param_groups.

This can be useful when fine tuning a pre-trained network as frozen layers can be made trainable and added to the Optimizer as training progresses.

Parameters:

param_group (dict) – Specifies what Tensors should be optimized along with group specific optimization options.

load_state_dict(state_dict)

Loads the optimizer state.

Parameters:

state_dict (dict) – optimizer state. Should be an object returned from a call to state_dict().

state_dict()

Returns the state of the optimizer as a dict.

It contains two entries:

  • state - a dict holding current optimization state. Its content

    differs between optimizer classes.

  • param_groups - a list containing all parameter groups where each

    parameter group is a dict

step(closure=None) [source]

Performs a single optimization step.

Parameters:

closure (Callable, optional) – A closure that reevaluates the model and returns the loss.

zero_grad(set_to_none=False)

Sets the gradients of all optimized torch.Tensor s to zero.

Parameters:

set_to_none (bool) – instead of setting to zero, set the grads to None. This will in general have lower memory footprint, and can modestly improve performance. However, it changes certain behaviors. For example: 1. When the user tries to access a gradient and perform manual ops on it, a None attribute or a Tensor full of 0s will behave differently. 2. If the user requests zero_grad(set_to_none=True) followed by a backward pass, .grads are guaranteed to be None for params that did not receive a gradient. 3. torch.optim optimizers have a different behavior if the gradient is 0 or None (in one case it does the step with a gradient of 0 and in the other it skips the step altogether).

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/1.13/generated/torch.optim.NAdam.html