On this page
torch.addbmm
torch.addbmm(input, batch1, batch2, *, beta=1, alpha=1, out=None) → Tensor-
Performs a batch matrix-matrix product of matrices stored in
batch1andbatch2, with a reduced add step (all matrix multiplications get accumulated along the first dimension).inputis added to the final result.batch1andbatch2must be 3-D tensors each containing the same number of matrices.If
batch1is a tensor,batch2is a tensor,inputmust be broadcastable with a tensor andoutwill be a tensor.If
betais 0, theninputwill be ignored, andnanandinfin it will not be propagated.For inputs of type
FloatTensororDoubleTensor, argumentsbetaandalphamust be real numbers, otherwise they should be integers.This operator supports TensorFloat32.
On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
- Parameters
- Keyword Arguments
Example:
>>> M = torch.randn(3, 5) >>> batch1 = torch.randn(10, 3, 4) >>> batch2 = torch.randn(10, 4, 5) >>> torch.addbmm(M, batch1, batch2) tensor([[ 6.6311, 0.0503, 6.9768, -12.0362, -2.1653], [ -4.8185, -1.4255, -6.6760, 8.9453, 2.5743], [ -3.8202, 4.3691, 1.0943, -1.1109, 5.4730]])
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.addbmm.html