On this page
torch.addmm
torch.addmm(input, mat1, mat2, *, beta=1, alpha=1, out=None) → Tensor-
Performs a matrix multiplication of the matrices
mat1andmat2. The matrixinputis added to the final result.If
mat1is a tensor,mat2is a tensor, theninputmust be broadcastable with a tensor andoutwill be a tensor.alphaandbetaare scaling factors on matrix-vector product betweenmat1andmat2and the added matrixinputrespectively.If
betais 0, theninputwill be ignored, andnanandinfin it will not be propagated.For inputs of type
FloatTensororDoubleTensor, argumentsbetaandalphamust be real numbers, otherwise they should be integers.This operation has support for arguments with sparse layouts. If
inputis sparse the result will have the same layout and ifoutis provided it must have the same layout asinput.Warning
Sparse support is a beta feature and some layout(s)/dtype/device combinations may not be supported, or may not have autograd support. If you notice missing functionality please open a feature request.
This operator supports TensorFloat32.
On certain ROCm devices, when using float16 inputs this module will use different precision for backward.
- Parameters
- Keyword Arguments
-
- beta (Number, optional) – multiplier for
input( ) - alpha (Number, optional) – multiplier for ( )
- out (Tensor, optional) – the output tensor.
- beta (Number, optional) – multiplier for
Example:
>>> M = torch.randn(2, 3) >>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.addmm(M, mat1, mat2) tensor([[-4.8716, 1.4671, -1.3746], [ 0.7573, -3.9555, -2.8681]])
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.addmm.html