On this page
torch.linalg.pinv
torch.linalg.pinv(A, *, atol=None, rtol=None, hermitian=False, out=None) → Tensor-
Computes the pseudoinverse (Moore-Penrose inverse) of a matrix.
The pseudoinverse may be defined algebraically but it is more computationally convenient to understand it through the SVD
Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of matrices, and if
Ais a batch of matrices then the output has the same batch dimensions.If
hermitian= True,Ais assumed to be Hermitian if complex or symmetric if real, but this is not checked internally. Instead, just the lower triangular part of the matrix is used in the computations.The singular values (or the norm of the eigenvalues when
hermitian= True) that are below threshold are treated as zero and discarded in the computation, where is the largest singular value (or eigenvalue).If
rtolis not specified andAis a matrix of dimensions(m, n), the relative tolerance is set to be and is the epsilon value for the dtype ofA(seefinfo). Ifrtolis not specified andatolis specified to be larger than zero thenrtolis set to zero.If
atolorrtolis atorch.Tensor, its shape must be broadcastable to that of the singular values ofAas returned bytorch.linalg.svd().Note
This function uses
torch.linalg.svd()ifhermitian= Falseandtorch.linalg.eigh()ifhermitian= True. For CUDA inputs, this function synchronizes that device with the CPU.Note
Consider using
torch.linalg.lstsq()if possible for multiplying a matrix on the left by the pseudoinverse, as:torch.linalg.lstsq(A, B).solution == A.pinv() @ BIt is always preferred to use
lstsq()when possible, as it is faster and more numerically stable than computing the pseudoinverse explicitly.Note
This function has NumPy compatible variant
linalg.pinv(A, rcond, hermitian=False). However, use of the positional argumentrcondis deprecated in favor ofrtol.Warning
This function uses internally
torch.linalg.svd()(ortorch.linalg.eigh()whenhermitian= True), so its derivative has the same problems as those of these functions. See the warnings intorch.linalg.svd()andtorch.linalg.eigh()for more details.See also
torch.linalg.inv()computes the inverse of a square matrix.torch.linalg.lstsq()computesA.pinv() @Bwith a numerically stable algorithm.- Parameters
- Keyword Arguments
-
- atol (float, Tensor, optional) – the absolute tolerance value. When
Noneit’s considered to be zero. Default:None. - rtol (float, Tensor, optional) – the relative tolerance value. See above for the value it takes when
None. Default:None. - hermitian (bool, optional) – indicates whether
Ais Hermitian if complex or symmetric if real. Default:False. - out (Tensor, optional) – output tensor. Ignored if
None. Default:None.
- atol (float, Tensor, optional) – the absolute tolerance value. When
Examples:
>>> A = torch.randn(3, 5) >>> A tensor([[ 0.5495, 0.0979, -1.4092, -0.1128, 0.4132], [-1.1143, -0.3662, 0.3042, 1.6374, -0.9294], [-0.3269, -0.5745, -0.0382, -0.5922, -0.6759]]) >>> torch.linalg.pinv(A) tensor([[ 0.0600, -0.1933, -0.2090], [-0.0903, -0.0817, -0.4752], [-0.7124, -0.1631, -0.2272], [ 0.1356, 0.3933, -0.5023], [-0.0308, -0.1725, -0.5216]]) >>> A = torch.randn(2, 6, 3) >>> Apinv = torch.linalg.pinv(A) >>> torch.dist(Apinv @ A, torch.eye(3)) tensor(8.5633e-07) >>> A = torch.randn(3, 3, dtype=torch.complex64) >>> A = A + A.T.conj() # creates a Hermitian matrix >>> Apinv = torch.linalg.pinv(A, hermitian=True) >>> torch.dist(Apinv @ A, torch.eye(3)) tensor(1.0830e-06)
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.linalg.pinv.html