On this page
torch.nanmean
torch.nanmean(input, dim=None, keepdim=False, *, dtype=None, out=None) → Tensor-
Computes the mean of all
non-NaNelements along the specified dimensions.This function is identical to
torch.mean()when there are noNaNvalues in theinputtensor. In the presence ofNaN,torch.mean()will propagate theNaNto the output whereastorch.nanmean()will ignore theNaNvalues (torch.nanmean(a)is equivalent totorch.mean(a[~a.isnan()])).If
keepdimisTrue, the output tensor is of the same size asinputexcept in the dimension(s)dimwhere it is of size 1. Otherwise,dimis squeezed (seetorch.squeeze()), resulting in the output tensor having 1 (orlen(dim)) fewer dimension(s).- Parameters
- Keyword Arguments
-
- dtype (
torch.dtype, optional) – the desired data type of returned tensor. If specified, the input tensor is casted todtypebefore the operation is performed. This is useful for preventing data type overflows. Default: None. - out (Tensor, optional) – the output tensor.
- dtype (
See also
torch.mean()computes the mean value, propagatingNaN.Example:
>>> x = torch.tensor([[torch.nan, 1, 2], [1, 2, 3]]) >>> x.mean() tensor(nan) >>> x.nanmean() tensor(1.8000) >>> x.mean(dim=0) tensor([ nan, 1.5000, 2.5000]) >>> x.nanmean(dim=0) tensor([1.0000, 1.5000, 2.5000]) # If all elements in the reduced dimensions are NaN then the result is NaN >>> torch.tensor([torch.nan]).nanmean() tensor(nan)
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nanmean.html