pytorch / 2 / generated / torch.nn.cosinesimilarity.html

CosineSimilarity

class torch.nn.CosineSimilarity(dim=1, eps=1e-08) [source]

Returns cosine similarity between x 1 x_1 and x 2 x_2 , computed along dim.

similarity = x 1 x 2 max ( x 1 2 x 2 2 , ϵ ) . \text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2 \cdot \Vert x_2 \Vert _2, \epsilon)}.
Parameters
  • dim (int, optional) – Dimension where cosine similarity is computed. Default: 1
  • eps (float, optional) – Small value to avoid division by zero. Default: 1e-8
Shape:
  • Input1: ( 1 , D , 2 ) (\ast_1, D, \ast_2) where D is at position dim
  • Input2: (∗1,D,∗2)(\ast_1, D, \ast_2), same number of dimensions as x1, matching x1 size at dimension dim,

    and broadcastable with x1 at other dimensions.

  • Output: ( 1 , 2 ) (\ast_1, \ast_2)
Examples::
>>> input1 = torch.randn(100, 128)
>>> input2 = torch.randn(100, 128)
>>> cos = nn.CosineSimilarity(dim=1, eps=1e-6)
>>> output = cos(input1, input2)

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.CosineSimilarity.html