On this page
torch.nn.functional.avg_pool2d
torch.nn.functional.avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) → Tensor-
Applies 2D average-pooling operation in regions by step size steps. The number of output features is equal to the number of input planes.
See
AvgPool2dfor details and output shape.- Parameters
-
- input – input tensor
- kernel_size – size of the pooling region. Can be a single number or a tuple
(kH, kW) - stride – stride of the pooling operation. Can be a single number or a tuple
(sH, sW). Default:kernel_size - padding – implicit zero paddings on both sides of the input. Can be a single number or a tuple
(padH, padW). Default: 0 - ceil_mode – when True, will use
ceilinstead offloorin the formula to compute the output shape. Default:False - count_include_pad – when True, will include the zero-padding in the averaging calculation. Default:
True - divisor_override – if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.functional.avg_pool2d.html