pytorch / 2 / generated / torch.nn.functional.avg_pool3d.html

torch.nn.functional.avg_pool3d

torch.nn.functional.avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) → Tensor

Applies 3D average-pooling operation in k T × k H × k W kT \times kH \times kW regions by step size s T × s H × s W sT \times sH \times sW steps. The number of output features is equal to input planes s T \lfloor\frac{\text{input planes}}{sT}\rfloor .

See AvgPool3d for details and output shape.

Parameters
  • input – input tensor ( minibatch , in_channels , i T × i H , i W ) (\text{minibatch} , \text{in\_channels} , iT \times iH , iW)
  • kernel_size – size of the pooling region. Can be a single number or a tuple (kT, kH, kW)
  • stride – stride of the pooling operation. Can be a single number or a tuple (sT, sH, sW). Default: kernel_size
  • padding – implicit zero paddings on both sides of the input. Can be a single number or a tuple (padT, padH, padW), Default: 0
  • ceil_mode – when True, will use ceil instead of floor in the formula to compute the output shape
  • count_include_pad – when True, will include the zero-padding in the averaging calculation
  • divisor_override – if specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: None

© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.functional.avg_pool3d.html