On this page
torch.nn.functional.normalize
torch.nn.functional.normalize(input, p=2.0, dim=1, eps=1e-12, out=None)
[source]-
Performs normalization of inputs over specified dimension.
For a tensor
input
of sizes , each -element vector along dimensiondim
is transformed asWith the default arguments it uses the Euclidean norm over vectors along dimension for normalization.
- Parameters
-
- input (Tensor) – input tensor of any shape
- p (float) – the exponent value in the norm formulation. Default: 2
- dim (int or tuple of ints) – the dimension to reduce. Default: 1
- eps (float) – small value to avoid division by zero. Default: 1e-12
- out (Tensor, optional) – the output tensor. If
out
is used, this operation won’t be differentiable.
- Return type
© 2024, PyTorch Contributors
PyTorch has a BSD-style license, as found in the LICENSE file.
https://pytorch.org/docs/2.1/generated/torch.nn.functional.normalize.html